aboutsummaryrefslogtreecommitdiffstats
path: root/src/make_plots.py
diff options
context:
space:
mode:
authorjeanpouget-abadie <jean.pougetabadie@gmail.com>2015-05-15 10:58:29 +0200
committerjeanpouget-abadie <jean.pougetabadie@gmail.com>2015-05-15 10:58:29 +0200
commit0f6b315caf29f67d89b876ee14178dc7b1db6254 (patch)
tree118b62e5099d4e6776b21d2ff045699abe70a7d7 /src/make_plots.py
parente794a29f1d777e65f778aaf2ff9c764ce5155f3f (diff)
downloadcascades-0f6b315caf29f67d89b876ee14178dc7b1db6254.tar.gz
poster+beginning of experiments
Diffstat (limited to 'src/make_plots.py')
-rw-r--r--src/make_plots.py18
1 files changed, 9 insertions, 9 deletions
diff --git a/src/make_plots.py b/src/make_plots.py
index c45479e..8970cdf 100644
--- a/src/make_plots.py
+++ b/src/make_plots.py
@@ -54,7 +54,7 @@ def plot_watts_strogatz_graph():
plt.clf()
fig = plt.figure(1)
labels = [50, 100, 500, 1000, 2000, 5000]
- x = [np.log(50), np.log(100), np.log(500),
+ x = [np.log(50), np.log(100), np.log(500),
np.log(1000), np.log(2000), np.log(5000)]
sparse_recov = [.25, .32, .7, .82, .89, .92]
max_likel = [.21, .29, .67, .8, .87, .9]
@@ -84,7 +84,7 @@ def plot_barabasi_albert_graph():
plt.clf()
fig = plt.figure(1)
labels = [50, 100, 500, 1000, 2000, 5000]
- x = [np.log(50), np.log(100), np.log(500),
+ x = [np.log(50), np.log(100), np.log(500),
np.log(1000), np.log(2000), np.log(5000)]
sparse_recov = [.35, .38, .58, .69, .79, .86]
max_likel = [.35, .38, .56, .68, .78, .85]
@@ -188,13 +188,13 @@ def plot_ROC_curve(figure_name):
plt.ylabel("Precision")
plt.grid(color="lightgrey")
- ax.plot(recall_lasso_200, precision_lasso_200, 'ko-',
+ ax.plot(recall_lasso_200, precision_lasso_200, 'ko-',
color="lightseagreen", label="Lasso-200 cascades")
- ax.plot(recall_sparse_200, precision_sparse_200, 'ko-',
+ ax.plot(recall_sparse_200, precision_sparse_200, 'ko-',
color="k", label="Our Method-200 cascades")
- ax.plot(recall_lasso_50, precision_lasso_50, 'ko-',
+ ax.plot(recall_lasso_50, precision_lasso_50, 'ko-',
color="orange", label="Lasso-50 cascades")
- ax.plot(recall_sparse_50, precision_sparse_50, 'ko-',
+ ax.plot(recall_sparse_50, precision_sparse_50, 'ko-',
color="cornflowerblue", label="Our Method-50 cascades")
plt.legend(loc="upper right", fontsize=14)
plt.savefig("../paper/figures/"+"ROC_curve.pdf")
@@ -253,9 +253,9 @@ if __name__=="__main__":
#algorithms.greedy_prediction)
#convex_optimization.type_lasso)
if 0:
- compute_graph("../datasets/kronecker_graph_256_cross.txt",
+ compute_graph("../datasets/kronecker_graph_256_cross.txt",
n_cascades=50, lbda=0., min_proba=.2, max_proba=.7,
passed_function=
- convex_optimization.sparse_recovery,
+ convex_optimization.sparse_recovery,
#convex_optimization.type_lasso,
- sparse_edges=True) \ No newline at end of file
+ sparse_edges=True)