aboutsummaryrefslogtreecommitdiffstats
path: root/src/make_plots.py
diff options
context:
space:
mode:
authorjeanpouget-abadie <jean.pougetabadie@gmail.com>2015-02-04 18:39:03 -0500
committerjeanpouget-abadie <jean.pougetabadie@gmail.com>2015-02-04 18:39:03 -0500
commit393cba417046147286001e7317a36db148545bb1 (patch)
tree42f3060330b28d1a7a069da9b70ae0a8b214ef40 /src/make_plots.py
parent0e6ef8ce1055b3a524e2432ffda76f1acceed3d3 (diff)
downloadcascades-393cba417046147286001e7317a36db148545bb1.tar.gz
routine commit
Diffstat (limited to 'src/make_plots.py')
-rw-r--r--src/make_plots.py40
1 files changed, 29 insertions, 11 deletions
diff --git a/src/make_plots.py b/src/make_plots.py
index 28d89e2..10fd657 100644
--- a/src/make_plots.py
+++ b/src/make_plots.py
@@ -27,11 +27,14 @@ def compare_greedy_and_lagrange_cs284r():
algorithms.correctness_measure(G, G_hat, print_values=True)
-def compute_graph(graph_name, n_cascades, lbda, passed_function):
+def compute_graph(graph_name, n_cascades, lbda, passed_function, min_proba,
+ max_proba, sparse_edges=False):
"""
Test running time on different algorithms
"""
- G = cascade_creation.InfluenceGraph(max_proba=.7, min_proba=.2)
+ G = cascade_creation.InfluenceGraph(max_proba=max_proba,
+ min_proba=min_proba,
+ sparse_edges=True)
G.import_from_file(graph_name)
A = cascade_creation.generate_cascades(G, p_init=.05, n_cascades=n_cascades)
@@ -51,7 +54,8 @@ def plot_watts_strogatz_graph():
plt.clf()
fig = plt.figure(1)
labels = [50, 100, 500, 1000, 2000, 5000]
- x = [np.log(50), np.log(100), np.log(500), np.log(1000), np.log(2000), np.log(5000)]
+ x = [np.log(50), np.log(100), np.log(500),
+ np.log(1000), np.log(2000), np.log(5000)]
sparse_recov = [.25, .32, .7, .82, .89, .92]
max_likel = [.21, .29, .67, .8, .87, .9]
lasso = [.07, .30, .46, .65, .86, .89]
@@ -97,10 +101,14 @@ def plot_ROC_curve(figure_name):
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.grid(color="lightgrey")
- ax.plot(recall_lasso_200, precision_lasso_200, 'ko-', color="lightseagreen", label="Lasso-200 cascades")
- ax.plot(recall_sparse_200, precision_sparse_200, 'ko-', color="k", label="Our Method-200 cascades")
- ax.plot(recall_lasso_50, precision_lasso_50, 'ko-', color="orange", label="Lasso-50 cascades")
- ax.plot(recall_sparse_50, precision_sparse_50, 'ko-', color="cornflowerblue", label="Our Method-50 cascades")
+ ax.plot(recall_lasso_200, precision_lasso_200, 'ko-',
+ color="lightseagreen", label="Lasso-200 cascades")
+ ax.plot(recall_sparse_200, precision_sparse_200, 'ko-',
+ color="k", label="Our Method-200 cascades")
+ ax.plot(recall_lasso_50, precision_lasso_50, 'ko-',
+ color="orange", label="Lasso-50 cascades")
+ ax.plot(recall_sparse_50, precision_sparse_50, 'ko-',
+ color="cornflowerblue", label="Our Method-50 cascades")
plt.legend(loc="upper right")
plt.savefig("../paper/figures/"+"ROC_curve.pdf")
@@ -108,19 +116,29 @@ def plot_ROC_curve(figure_name):
if __name__=="__main__":
if 0:
compute_graph("../datasets/watts_strogatz_300_30_point3.txt",
- n_cascades=100, lbda=.01, passed_function=
+ n_cascades=100, lbda=.01, min_proba=.2, max_proba=.7,
+ passed_function=
#convex_optimization.sparse_recovery)
#algorithms.greedy_prediction)
convex_optimization.sparse_recovery)
if 0:
compute_graph("../datasets/powerlaw_200_30_point3.txt",
- n_cascades=200, lbda=.01, passed_function=
+ n_cascades=200, lbda=.01, min_proba=.2, max_proba=.7,
+ passed_function=
#convex_optimization.sparse_recovery)
#algorithms.greedy_prediction)
convex_optimization.type_lasso)
if 0:
compute_graph("../datasets/barabasi_albert_300_30.txt",
- n_cascades=100, lbda=.002, passed_function=
+ n_cascades=100, lbda=.002, min_proba=.2,
+ max_proba=.7, passed_function=
convex_optimization.sparse_recovery)
#algorithms.greedy_prediction)
- #convex_optimization.type_lasso) \ No newline at end of file
+ #convex_optimization.type_lasso)
+ if 1:
+ compute_graph("../datasets/kronecker_graph_256_cross.txt",
+ n_cascades=1000, lbda=.001, min_proba=.2, max_proba=.7,
+ passed_function=
+ convex_optimization.sparse_recovery,
+ #convex_optimization.type_lasso,
+ sparse_edges=False) \ No newline at end of file