diff options
| author | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-02-04 14:05:47 -0500 |
|---|---|---|
| committer | jeanpouget-abadie <jean.pougetabadie@gmail.com> | 2015-02-04 14:05:47 -0500 |
| commit | 71cf5d890df71701d0fd60f1907a1cc63b508cbf (patch) | |
| tree | 9acbdf7ee08d1ceba8b15e4eac169680ab77bb82 /src/make_plots.py | |
| parent | a819813ca6c310d84a52de51e7bc49ea8dd8a726 (diff) | |
| download | cascades-71cf5d890df71701d0fd60f1907a1cc63b508cbf.tar.gz | |
adding precision_recall curve
Diffstat (limited to 'src/make_plots.py')
| -rw-r--r-- | src/make_plots.py | 47 |
1 files changed, 26 insertions, 21 deletions
diff --git a/src/make_plots.py b/src/make_plots.py index 9b0fc11..1b3a9df 100644 --- a/src/make_plots.py +++ b/src/make_plots.py @@ -78,26 +78,31 @@ def plot_ROC_curve(figure_name): plot information in a pretty way """ plt.clf() - fig = plt.figure(1) - #labels = [0, .00002, .002, .02, .2, .5] - x_sparse = [.57, .6, .61, .76, .9] - y_sparse = [.41, .4, .37, .16, .03] - - x_lasso = [.55, .56, .66] - y_lasso = [.5, .43, .25] + fig = plt.figure(2) fig, ax = plt.subplots() - plt.axis((np.log(45), np.log(5500), 0, 1)) - plt.xlabel("Number of Cascades") - plt.ylabel("F1 score") + recall_sparse_200 = [.03, .16, .37, .4, .49] + precision_sparse_200 = [.9, .76, .61, .6, .63] + + recall_lasso_200 = [.02, .11, .25, .43, .5, .54] + precision_lasso_200 = [.77, .77, .66, .56, .55, .51] + + recall_sparse_50 = [.07, .13, .16, .58] + precision_sparse_50 = [.56, .53, .49, .37] + + recall_lasso_50 = [.03, .18, .27, .82] + precision_lasso_50 = [.6, .47, .44, .24] + + plt.xlabel("Recall") + plt.ylabel("Precision") plt.grid(color="lightgrey") - ax.plot(x_lasso, y_lasso, 'ko-', color="orange", label="Lasso") - ax.plot(x_sparse, y_sparse, 'ko-', color="k", label="Our Method") - plt.legend(loc="lower right") - ax.set_xticks(x) - ax.set_xticklabels(tuple(labels)) - plt.savefig("../paper/figures/"+figure_name) + ax.plot(recall_lasso_200, precision_lasso_200, 'ko-', color="lightseagreen", label="Lasso-200 cascades") + ax.plot(recall_sparse_200, precision_sparse_200, 'ko-', color="k", label="Our Method-200 cascades") + ax.plot(recall_lasso_50, precision_lasso_50, 'ko-', color="orange", label="Lasso-50 cascades") + ax.plot(recall_sparse_50, precision_sparse_50, 'ko-', color="cornflowerblue", label="Our Method-50 cascades") + plt.legend(loc="upper right") + plt.savefig("../paper/figures/"+"ROC_curve.pdf") if __name__=="__main__": @@ -107,13 +112,13 @@ if __name__=="__main__": #convex_optimization.sparse_recovery) #algorithms.greedy_prediction) convex_optimization.sparse_recovery) - if 0: + if 1: compute_graph("../datasets/powerlaw_200_30_point3.txt", - n_cascades=300, lbda=.002, passed_function= - convex_optimization.sparse_recovery) + n_cascades=200, lbda=.01, passed_function= + #convex_optimization.sparse_recovery) #algorithms.greedy_prediction) - #convex_optimization.type_lasso) - if 1: + convex_optimization.type_lasso) + if 0: compute_graph("../datasets/barabasi_albert_300_30.txt", n_cascades=100, lbda=.002, passed_function= convex_optimization.sparse_recovery) |
