aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--paper/sections/model.tex6
1 files changed, 3 insertions, 3 deletions
diff --git a/paper/sections/model.tex b/paper/sections/model.tex
index 5f03199..4cef131 100644
--- a/paper/sections/model.tex
+++ b/paper/sections/model.tex
@@ -32,8 +32,6 @@ linear models} (GLM) to define a generalized linear cascade.
\big(1-f(\inprod{\theta_i}{X^{t}}\big)^{1-x_i}
\end{displaymath}
where $f:\mathbb{R}\to[0,1]$.
-Let $f: \mathbb{R} \leftarrow \mathbb{R}$ be an inverse link function. Let ${\cal F}_{< t}$ be the filtration defined by $\{ X^0, X^1, \dots, X^{t-1} \}$. A \emph{generalized linear cascade} is defined as:
-$$\mathbb{P}(X^t = 1|{\cal F}_{< t}) = \exp(blabla$$
\end{definition}
It follows immediately from this definition that a generalized linear cascade
@@ -44,7 +42,9 @@ satisfies the Markov property:
\subsection{Examples}
\label{subsec:examples}
-In this section, we show that both the Independent Cascade Model and the Voter model are Generalized Linear Cascades. We discuss the Linear Threshold model in Section~\ref{sec:linear_threshold}
+In this section, we show that both the Independent Cascade Model and the Voter
+model are Generalized Linear Cascades. The Linear Threshold model will be
+discussed in Section~\ref{sec:linear_threshold}
\subsubsection{Independent Cascade Model}