aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--src/convex_optimization.py4
-rw-r--r--src/make_plots.py14
2 files changed, 10 insertions, 8 deletions
diff --git a/src/convex_optimization.py b/src/convex_optimization.py
index ed99e6b..3111e50 100644
--- a/src/convex_optimization.py
+++ b/src/convex_optimization.py
@@ -48,7 +48,7 @@ def sparse_recovery(lbda, n_cascades):
return f_x, f_xz
-def type_lasso(lbda):
+def type_lasso(lbda, n_cascades):
"""
Solves:
min - sum_j theta_j + lbda*|e^{M*theta} - (1 - w)|_2
@@ -90,7 +90,7 @@ def diff_and_opt(M_val, w_val, f_x, f_xz):
def F(x=None, z=None):
if x is None:
- return 0, cvxopt.matrix(-.1, (n,1))
+ return 0, cvxopt.matrix(-.00001, (n,1))
elif z is None:
y, y_diff = f_x(x, M_val, w_val)
return cvxopt.matrix(float(y), (1, 1)),\
diff --git a/src/make_plots.py b/src/make_plots.py
index d28d07e..cbe027e 100644
--- a/src/make_plots.py
+++ b/src/make_plots.py
@@ -49,11 +49,11 @@ def plot_graph(figure_name):
plot information in a pretty way
"""
plt.clf()
- x = [100, 500, 1000, 2000, 5000]
- greedy = [.15, .4, .63, .82, .92]
- lasso = [.30, .46, .65, 0, 0]
- max_likel = [.29, .67, .8, .87, .9]
- sparse_recov = [.32, .7, .82, .89, 0]
+ x = [50, 100, 500, 1000, 2000, 5000]
+ greedy = [.09, .15, .4, .63, .82, .92]
+ lasso = [.07, .30, .46, .65, 0, 0]
+ max_likel = [.21, .29, .67, .8, .87, .9]
+ sparse_recov = [.25, .32, .7, .82, .89, .92]
plt.axis((0, 5000, 0, 1))
plt.xlabel("Number of Cascades")
plt.ylabel("F1 score")
@@ -68,4 +68,6 @@ def plot_graph(figure_name):
if __name__=="__main__":
watts_strogatz(n_cascades=5000, lbda=.002, passed_function=
- convex_optimization.sparse_recovery) \ No newline at end of file
+ #convex_optimization.sparse_recovery)
+ #algorithms.greedy_prediction)
+ convex_optimization.type_lasso) \ No newline at end of file