diff options
| -rw-r--r-- | paper/sections/results.tex | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/paper/sections/results.tex b/paper/sections/results.tex index 86f4c32..c39f9da 100644 --- a/paper/sections/results.tex +++ b/paper/sections/results.tex @@ -29,7 +29,7 @@ write $S\defeq\text{supp}(\theta^*)$ and $s=|S|$. Recall, that $\theta_i$ is the 3\|X_S\|_1\}$. We say that $\Sigma$ satisfies the $(S,\gamma)$-\emph{restricted eigenvalue condition} iff: \begin{equation} - \forall X \in {\cal C(S)}, \| \Sigma X \|_2^2 \geq \gamma \|X\|_2^2 + \forall X \in {\cal C(S)}, X^T \Sigma X \geq \gamma \|X\|_2^2 \tag{RE} \label{eq:re} \end{equation} |
