aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--jpa_test/cascade_creation.py3
-rw-r--r--jpa_test/make_plots.py12
-rw-r--r--jpa_test/rip_condition.py5
-rw-r--r--notes/beamerthemeconfposter.sty184
-rw-r--r--notes/cascades.pngbin0 -> 73864 bytes
-rw-r--r--notes/cracking_cascades_classposter.tex424
6 files changed, 620 insertions, 8 deletions
diff --git a/jpa_test/cascade_creation.py b/jpa_test/cascade_creation.py
index a5c38cd..cc84c70 100644
--- a/jpa_test/cascade_creation.py
+++ b/jpa_test/cascade_creation.py
@@ -76,7 +76,8 @@ def icc_matrixvector_for_node(cascades, node):
Returns M, w in matrix form where rows of M are i = t + k.T
Excludes all (t,k) after node infection time; w = 1_{infected}
"""
- #TODO: you need to remove the variable corresponding to the node you are solving for!!!!
+ #TODO: you need to remove the variable corresponding to the node
+ #you are solving for!!!!
if node is None:
return np.vstack(cascades), None
else:
diff --git a/jpa_test/make_plots.py b/jpa_test/make_plots.py
index ed7bb10..e3c0d3d 100644
--- a/jpa_test/make_plots.py
+++ b/jpa_test/make_plots.py
@@ -14,16 +14,18 @@ def plot_rip_numberofnodes(max_proba, n_min, n_max, p_init, n_cascades, K_max):
for n_nodes in x:
print n_nodes
G = cascade_creation.InfluenceGraph(max_proba=.3)
- G.erdos_init(n=n_nodes, p=.5) #TODO: handle different inits!
+ G.erdos_init(n=n_nodes, p=.1) #TODO: handle different inits!
cascades = cascade_creation.generate_cascades(G, p_init=p_init,
n_cascades=n_cascades)
M, __ = cascade_creation.icc_matrixvector_for_node(cascades, None)
M = cascade_creation.normalize_matrix(M)
- y.append(rip_condition.find_kth_rip_constants(M, 5))
+ y.append(rip_condition.find_kth_rip_constants(M, 4)) #
+
+ print y
plt.clf()
plt.plot(x, y)
- plt.show()
+ #plt.show()
return x, y
@@ -32,8 +34,8 @@ def test():
"""
unit test
"""
- plot_rip_numberofnodes(max_proba=.3, n_min=10, n_max=15,
- p_init=.3, n_cascades=10, K_max=5)
+ plot_rip_numberofnodes(max_proba=.3, n_min=30, n_max=30,
+ p_init=.01, n_cascades=100, K_max=4)
if __name__=="__main__":
test()
diff --git a/jpa_test/rip_condition.py b/jpa_test/rip_condition.py
index 7c1ce85..fccf9a4 100644
--- a/jpa_test/rip_condition.py
+++ b/jpa_test/rip_condition.py
@@ -10,11 +10,12 @@ def find_kth_rip_constants(M, k):
1 + A_1 = arg max |Mx|_2^2 s.t. |x|_2 = 1 and |x|_0 = k
1 - A_2 = arg min |Mx|_2^2 s.t. |x|_2 = 1 and |x|_0 = kx
"""
- delta = 10
+ delta = 0
+ print M.shape
for col_set in itertools.combinations(xrange(M.shape[1]), k):
M_kcol = M[:,list(col_set)]
delta_upper, delta_lower = upperlower_bound_rip(M_kcol)
- delta = min(delta, min(delta_upper, delta_lower))
+ delta = max(delta, max(delta_upper, delta_lower))
return delta
diff --git a/notes/beamerthemeconfposter.sty b/notes/beamerthemeconfposter.sty
new file mode 100644
index 0000000..bcba6a7
--- /dev/null
+++ b/notes/beamerthemeconfposter.sty
@@ -0,0 +1,184 @@
+%==============================================================================
+% Beamer style for the poster template posted at
+% www.nathanieljohnston.com/index.php/2009/08/latex-poster-template
+%
+% Created by the Computational Physics and Biophysics Group at Jacobs University
+% https://teamwork.jacobs-university.de:8443/confluence/display/CoPandBiG/LaTeX+Poster
+% Modified by Nathaniel Johnston (nathaniel@nathanieljohnston.com) in August 2009
+% =============================================================================
+
+\ProvidesPackage{beamerthemeconfposter}
+\RequirePackage{tikz} % for drawing the nice rounded boxes
+\usetikzlibrary{arrows,backgrounds}
+\RequirePackage[T1]{fontenc}
+\RequirePackage{lmodern}
+\RequirePackage{textcomp}
+\RequirePackage{amsmath,amssymb}
+\usefonttheme{professionalfonts}
+\newcommand{\makeruleinbox}{{\usebeamercolor[bg]{block alerted title}\centering\hspace*{-0.7cm}\rule{\inboxrule}{0.5cm}}}
+\usepackage{ragged2e}
+\usepackage{wrapfig}
+%-----------------------------------------------------------
+% Define a whole bunch of custom colours and fonts
+%-----------------------------------------------------------
+
+\definecolor{lgreen} {RGB}{180,210,100}
+\definecolor{dblue} {RGB}{20,66,129}
+\definecolor{ddblue} {RGB}{11,36,69}
+\definecolor{lred} {RGB}{220,0,0}
+\definecolor{nred} {RGB}{224,0,0}
+\definecolor{norange}{RGB}{244,127,36}
+\definecolor{nyellow}{RGB}{255,221,0}
+\definecolor{ngreen} {RGB}{98,158,31}
+\definecolor{dgreen} {RGB}{78,138,21}
+\definecolor{nblue} {RGB}{28,130,185}
+\definecolor{jblue} {RGB}{20,50,100}
+\definecolor{jalpha} {RGB}{0,0,0}
+
+% set the basic colors
+\setbeamercolor{palette primary} {fg=black,bg=white}
+\setbeamercolor{palette secondary} {fg=black,bg=white}
+\setbeamercolor{palette tertiary} {bg=jblue,fg=white}
+\setbeamercolor{palette quaternary}{fg=black,bg=white}
+\setbeamercolor{structure}{fg=jblue}
+\setbeamercolor{titlelike} {bg=jblue,fg=white}
+\setbeamercolor{frametitle} {bg=jblue!10,fg=jblue}
+\setbeamercolor{cboxb}{fg=black,bg=jblue}
+\setbeamercolor{cboxr}{fg=black,bg=red}
+
+% set colors for itemize/enumerate
+\setbeamercolor{item}{fg=ngreen}
+\setbeamercolor{item projected}{fg=white,bg=ngreen}
+
+% set colors for blocks
+%\setbeamercolor{block title}{fg=ngreen,bg=white}
+%\setbeamercolor{block body}{fg=black,bg=white}
+
+%set colors for alerted blocks (blocks with frame)
+\setbeamercolor{block alerted title}{fg=white,bg=jblue}
+\setbeamercolor{block alerted body}{fg=black,bg=jblue!10}
+
+% set the fonts
+\setbeamerfont{section in head/foot}{series=\bfseries}
+\setbeamerfont{block title}{series=\bfseries}
+\setbeamerfont{block alerted title}{series=\bfseries}
+\setbeamerfont{frametitle}{series=\bfseries}
+\setbeamerfont{frametitle}{size=\Large}
+
+% set some beamer theme options
+\setbeamertemplate{title page}[default][colsep=-4bp,rounded=true]
+\setbeamertemplate{sections/subsections in toc}[square]
+\setbeamertemplate{items}[circle]
+\setbeamertemplate{blocks}[width=0.0]
+\beamertemplatenavigationsymbolsempty
+
+% set bibliography style
+\setbeamertemplate{bibliography item}[text]
+\setbeamercolor{bibliography item}{fg=black,bg=white}
+\setbeamercolor{bibliography entry author}{fg=black,bg=white}
+\setbeamercolor{bibliography item}{fg=black,bg=white}
+
+% define some length variables that are used by the template
+\newlength{\inboxwd}
+\newlength{\iinboxwd}
+\newlength{\inboxrule}
+\makeatletter
+\makeatother
+
+%==============================================================================
+% build the poster title
+%==============================================================================
+\setbeamertemplate{headline}{
+ \leavevmode
+ \begin{columns}
+ \begin{column}{.2\linewidth}
+ \vskip1cm
+ \centering
+ %\includegraphics[height=4in]{UIUC-logo}
+ \end{column}
+ \vspace{1cm}
+ \begin{column}{.6\linewidth}
+ \vskip1cm
+ \centering
+ \usebeamercolor{title in headline}{\color{jblue}\Huge{\textbf{\inserttitle}}\\[0.5ex]}
+ \usebeamercolor{author in headline}{\color{fg}\Large{\insertauthor}\\[1ex]}
+ \usebeamercolor{institute in headline}{\color{fg}\large{\insertinstitute}\\[1ex]}
+ \vskip1cm
+ \end{column}
+ \vspace{1cm}
+ \begin{column}{.2\linewidth}
+ \vskip1cm
+ \centering
+ %\includegraphics[height=4in]{graph500-logo}
+ \vskip1cm
+ \end{column}
+ \vspace{1cm}
+ \end{columns}
+ \vspace{0.5in}
+ \hspace{0.5in}\begin{beamercolorbox}[wd=47in,colsep=0.15cm]{cboxb}\end{beamercolorbox}
+ \vspace{0.1in}
+}
+
+% Block definition
+\setbeamertemplate{block begin}
+{
+ \par\vskip\medskipamount
+ \begin{beamercolorbox}[colsep*=0ex,dp={2ex},center]{block title}
+ \vskip-0.25cm
+ \usebeamerfont{block title}\large\insertblocktitle
+ \begin{flushleft}
+ \vskip-1cm
+ \begin{tikzpicture}[remember picture,overlay]
+ \shade [inner color=gray,outer color=white]
+ (0,0) rectangle (\textwidth,0.3cm);
+ \end{tikzpicture}
+ \end{flushleft}
+ \end{beamercolorbox}
+ {\parskip0pt\par}
+ \ifbeamercolorempty[bg]{block title}
+ {}
+ {\ifbeamercolorempty[bg]{block body}{}{\nointerlineskip\vskip-0.5pt}}
+ \usebeamerfont{block body}
+ \vskip-0.5cm
+ \begin{beamercolorbox}[colsep*=0ex,vmode]{block body}
+ \justifying
+}
+
+\setbeamertemplate{block end}
+{
+ \end{beamercolorbox}
+ \vskip\smallskipamount
+}
+
+% Alert block definition (with frame)
+\setbeamertemplate{block alerted begin}
+{
+ \par\vskip\medskipamount
+ \begin{beamercolorbox}[sep=0ex,rounded=true,center,dp={2ex}]{block alerted title}
+ \vskip0.01cm
+ \usebeamerfont{block title}\large\insertblocktitle
+ \end{beamercolorbox}
+ {\parskip0pt\par}
+ \usebeamerfont{block body}
+ \vskip-0.8cm
+ \begin{beamercolorbox}[sep=0.5cm, rounded=true,center]{block alerted title}
+ \setlength{\inboxwd}{\linewidth}
+ \addtolength{\inboxwd}{-1cm}
+ \begin{beamercolorbox}[rounded=true,wd={\inboxwd},center]{block alerted body}
+ \setlength{\iinboxwd}{\inboxwd}
+ \setlength{\inboxrule}{\inboxwd}
+ \addtolength{\iinboxwd}{-0.5cm}
+ \addtolength{\inboxrule}{0.5cm}
+ \begin{center}
+ \begin{minipage}{\iinboxwd}
+ \justifying
+}
+
+\setbeamertemplate{block alerted end}
+{
+ \end{minipage}
+ \end{center}
+ \end{beamercolorbox}
+ \end{beamercolorbox}
+ \vskip\smallskipamount
+} \ No newline at end of file
diff --git a/notes/cascades.png b/notes/cascades.png
new file mode 100644
index 0000000..9f14d95
--- /dev/null
+++ b/notes/cascades.png
Binary files differ
diff --git a/notes/cracking_cascades_classposter.tex b/notes/cracking_cascades_classposter.tex
new file mode 100644
index 0000000..2b29109
--- /dev/null
+++ b/notes/cracking_cascades_classposter.tex
@@ -0,0 +1,424 @@
+\documentclass[final]{beamer}
+\usepackage[utf8]{inputenc}
+\usepackage[scale=1.41]{beamerposter} % Use the beamerposter package for laying out the poster
+
+\usetheme{confposter} % Use the confposter theme supplied with this template
+
+\usepackage{color, bbm}
+\setbeamercolor{block title}{fg=dblue,bg=white} % Colors of the block titles
+\setbeamercolor{block body}{fg=black,bg=white} % Colors of the body of blocks
+\setbeamercolor{block alerted title}{fg=white,bg=dblue!70} % Colors of the highlighted block titles
+\setbeamercolor{block alerted body}{fg=black,bg=dblue!10} % Colors of the body of highlighted blocks
+% Many more colors are available for use in beamerthemeconfposter.sty
+
+%-----------------------------------------------------------
+% Define the column widths and overall poster size
+% To set effective sepwid, onecolwid and twocolwid values, first choose how many columns you want and how much separation you want between columns
+% In this template, the separation width chosen is 0.024 of the paper width and a 4-column layout
+% onecolwid should therefore be (1-(# of columns+1)*sepwid)/# of columns e.g. (1-(4+1)*0.024)/4 = 0.22
+% Set twocolwid to be (2*onecolwid)+sepwid = 0.464
+% Set threecolwid to be (3*onecolwid)+2*sepwid = 0.708
+
+\newlength{\sepwid}
+\newlength{\onecolwid}
+\newlength{\twocolwid}
+\newlength{\threecolwid}
+\setlength{\paperwidth}{48in} % A0 width: 46.8in
+\setlength{\paperheight}{40in} % A0 height: 33.1in
+\setlength{\sepwid}{0.024\paperwidth} % Separation width (white space) between columns
+\setlength{\onecolwid}{0.22\paperwidth} % Width of one column
+\setlength{\twocolwid}{0.464\paperwidth} % Width of two columns
+\setlength{\threecolwid}{0.708\paperwidth} % Width of three columns
+\setlength{\topmargin}{-1in} % Reduce the top margin size
+%-----------------------------------------------------------
+
+\usepackage{graphicx} % Required for including images
+
+\usepackage{booktabs} % Top and bottom rules for tables
+
+
+
+%----------------------------------------------------------------------------------------
+% TITLE SECTION
+%----------------------------------------------------------------------------------------
+
+\title{Sparse Recovery for Graph Reconstruction } % Poster title
+
+\author{Eric Balkanski, Jean Pouget-Abadie} % Author(s)
+
+\institute{Harvard University} % Institution(s)
+%----------------------------------------------------------------------------------------
+\begin{document}
+\addtobeamertemplate{block end}{}{\vspace*{2ex}} % White space under blocks
+\addtobeamertemplate{block alerted end}{}{\vspace*{2ex}} % White space under highlighted (alert) blocks
+
+\setlength{\belowcaptionskip}{2ex} % White space under figures
+\setlength\belowdisplayshortskip{2ex} % White space under equations
+
+\begin{frame}[t] % The whole poster is enclosed in one beamer frame
+
+\begin{columns}[t] % The whole poster consists of three major columns, the second of which is split into two columns twice - the [t] option aligns each column's content to the top
+
+\begin{column}{\sepwid}\end{column} % Empty spacer column
+
+\begin{column}{\onecolwid} % The first column
+
+%----------------------------------------------------------------------------------------
+% INTODUCTION
+%----------------------------------------------------------------------------------------
+
+
+%\vspace{- 15.2 cm}
+%\begin{center}
+%{\includegraphics[height=7em]{logo.png}} % First university/lab logo on the left
+%\end{center}
+
+%\vspace{4.6 cm}
+
+\begin{block}{Introduction}
+
+{\bf Graph Reconstruction}:
+
+\begin{itemize}
+\item \{${\cal G}, \vec p$\}: directed graph, edge probabilities
+\item $F$: cascade generating model
+\item ${\cal M} := F\{{\cal G}, \vec p\}$: cascade
+\end{itemize}
+
+{\bf Objective}:
+\begin{itemize}
+\item Find algorithm which computes $F^{-1}({\cal M}) = \{{\cal G}, \vec p\}$ w.h.p., i.e. recovers graph from cascades.
+\end{itemize}
+
+{\bf Approach}
+\begin{itemize}
+\item Frame graph reconstruction as a {\it Sparse Recovery} problem for two cascade generating models.
+\end{itemize}
+
+%Given a set of observed cascades, the \textbf{graph reconstruction problem} consists of finding the underlying graph on which these cascades spread. We assume that these cascades come from the classical \textbf{Independent Cascade Model} where at each time step, newly infected nodes infect each of their neighbor with some probability.
+
+%In previous work, this problem has been formulated in different ways, including a convex optimization and a maximum likelihood problem. However, there is no known algorithm for graph reconstruction with theoretical guarantees and with a reasonable required sample size.
+
+%We formulate a novel approach to this problem in which we use \textbf{Sparse Recovery} to find the edges in the unknown underlying network. Sparse Recovery is the problem of finding the sparsest vector $x$ such that $\mathbf{M x =b}$. In our case, for each node $i$, we wish to recover the vector $x = p_i$ where $p_{i_j}$ is the probability that node $j$ infects node $i$ if $j$ is active. To recover this vector, we are given $M$, where row $M_{t,k}$ indicates which nodes are infected at time $t$ in observed cascade $k$, and $b$, where $b_{t+1,k}$ indicates if node $i$ is infected at time $t+1$ in cascade $k$. Since most nodes have a small number of neighbors in large networks, we can assume that these vectors are sparse. Sparse Recovery is a well studied problem which can be solved efficiently and with small error if $M$ satisfies certain properties. In this project, we empirically study to what extent $M$ satisfies the Restricted Isometry Property.
+
+\end{block}
+
+%---------------------------------------------------------------------------------
+%---------------------------------------------------------------------------------
+
+\begin{block}{Voter Model}
+{\bf Description}
+
+\begin{itemize}
+\item Two types of nodes, {\color{red} red} and {\color{blue} blue}.
+\item $\mathbb{P}$(node is {\color{blue} blue} at $t=0) = p_{\text{init}}$
+\item $\mathbb{P}$(node is {\color{blue} blue} at t+1) = $\frac{\text{Number of {\color{blue}blue} neighbors}}{\text{Total number of neighbors}}$
+\item Observe until horizon T
+\end{itemize}
+
+{\bf Sparse Recovery Formulation}
+\begin{itemize}
+\item Definitions:
+\end{itemize}
+\begin{align}
+(\vec m^t_k)_j &:= \left[\text{node j is {\color{blue} blue} at t in cascade k}\right] \nonumber \\
+(\vec x_{i})_j &:= \frac{\text{1}}{\text{deg}(i)} \cdot \left[\text{j parent of i in }{\cal G}\right] \nonumber \\
+b^t_{k,i} &:= \text{node i is {\color{blue} blue} at t+1 in cascade k} \nonumber
+\end{align}
+
+\begin{itemize}
+\item Observation:
+\end{itemize}
+\begin{align}
+\langle \vec m^t_k, \vec x_i \rangle &= \mathbb{P}(\text{node i is {\color{blue} blue} at t+1 in cascade k}) \nonumber \\
+&=: w^{t+1}_{k,i} \nonumber
+\end{align}
+
+\begin{itemize}
+\item We observe $M := \text{vstack}(\vec m^t_k)$
+\item We observe $b_i := \text{vstack}(b^t_{k,i})$ where $$b^t_{k,i} \sim {\cal B}(w^t_{k,i}) = w^t_{k,i} - \epsilon$$
+\item For each node i, solve for $\vec x_i$:
+\begin{equation}
+\boxed{M \vec x_i = \vec b_i + \epsilon \nonumber}
+\end{equation}
+\end{itemize}
+\end{block}
+
+
+
+
+
+%---------------------------------------------------------------------------------
+%---------------------------------------------------------------------------------
+
+
+%---------------------------------------------------------------------------------
+%---------------------------------------------------------------------------------
+
+\begin{block}{Independent Cascade Model}
+
+{\bf Description}
+\begin{itemize}
+\item Three possible states: susceptible, infected, inactive
+\item Infected node $j$ infects its susceptible neighbors $i$ with probability $p_{j,i}$ independently
+\item $\mathbb{P}$(inactive at t+1| infected at t) = 1
+\item $\mathbb{P}$(infected at t=0)$=p_{\text{init}}$
+\end{itemize}
+
+
+{\bf Sparse Recovery Formulation}
+\begin{itemize}
+
+\item Definitions:
+\begin{align}
+(\vec \theta_i)_j &:= \log ( 1 - p_{j,i}) \nonumber \\
+(\vec m^t_k)_j &= \left[\text{node j is infected at t in cascade k}\right] \nonumber
+\end{align}
+
+\item Observation:
+\begin{equation}
+\langle \vec m^t_k, \vec x_i \rangle = \log \mathbb{P}(\text{node i {\it not} infect. at t+1 in casc. k}) \nonumber
+\end{equation}
+\item With same notations, we solve for each node i:
+\begin{equation}
+\boxed{e^{M \vec \theta_i} = (1 - \vec b_i) + \epsilon} \nonumber
+\end{equation}
+where: $e^{M \vec \theta_i}$ is taken element-wise
+\end{itemize}
+\end{block}
+
+
+
+
+
+%---------------------------------------------------------------------------------
+%---------------------------------------------------------------------------------
+
+
+
+\end{column} % End of the first column
+
+\begin{column}{\sepwid}\end{column} % Empty spacer column
+
+\begin{column}{\onecolwid} % The first column
+
+%----------------------------------------------------------------------------------------
+% CONSTRAINT SATISFACTION - BACKTRACKING
+%----------------------------------------------------------------------------------------
+\begin{block}{Example}
+
+\begin{figure}
+\centering
+\includegraphics[width=0.6\textwidth]{cascades.png}
+\caption{Two cascades with two time steps each. Red nodes are the infected and active nodes.}
+\end{figure}
+
+Figure 1 illustrates two cascades. In this case, if we wish to recover $p_A$, then our problem would be is given by the formula
+\[ \left( \begin{array}{cccc}
+1 & 0 & 0 & 0 \\
+0 & 1 & 0 & 0 \\
+\end{array} \right) x_A = \left( \begin{array}{c}
+0 \\
+1 \\\end{array} \right)\]
+
+\end{block}
+
+%----------------------------------------------------------------------------------------
+
+\begin{block}{Motivation}
+\begin{itemize}
+\item Vectors $\vec x_i$ are deg(i)-sparse.
+\item Matrix $M$ is well-conditioned (see experimental section)
+\item Voter model: quasi-textbook noisy sparse recovery
+\item Independent cascade: if $p_{j,i} < 1 - \eta$, exponential can be approximated by affine function
+\end{itemize}
+\end{block}
+
+\begin{block}{Algorithms}
+
+{\bf Voter Model}
+
+\begin{itemize}
+\item Solve for each node i:
+\begin{equation}
+\min_{\vec x_i} \|\vec x_i\|_1 + \lambda \|M \vec x_i - \vec b_i \|_2 \nonumber
+\end{equation}
+\end{itemize}
+
+{\bf Independent Cascade Model}
+
+\begin{itemize}
+\item Solve for each node i:
+\begin{equation}
+\min_{\vec \theta_i} \|\vec \theta_i\|_1 + \lambda \|e^{M \vec \theta_i} - \vec b_i \|_2 \nonumber
+\end{equation}
+where: $e^{M \vec \theta_i}$ is taken element-wise
+\end{itemize}
+
+\end{block}
+
+
+
+
+
+%----------------------------------------------------------------------------------------
+% MIP
+%----------------------------------------------------------------------------------------
+
+% \begin{block}{RIP property}
+
+% %The Restricted Isometry Property (RIP) characterizes a quasi-orthonormality of the measurement matrix M on sparse vectors.
+
+% For all k, we define $\delta_k$ as the best possible constant such that for all unit-normed ($l$2) and k-sparse vectors $x$
+
+% \begin{equation}
+% 1-\delta_k \leq \|Mx\|^2_2 \leq 1 + \delta_k
+% \end{equation}
+
+% In general, the smaller $\delta_k$ is, the better we can recover $k$-sparse vectors $x$!
+
+% \end{block}
+
+%----------------------------------------------------------------------------------------
+
+\end{column}
+
+\begin{column}{\sepwid}\end{column} % Empty spacer column
+
+\begin{column}{\onecolwid} % The first column within column 2 (column 2.1)
+
+
+%----------------------------------------------------------------------------------------
+
+
+\begin{block}{Theoretical Guarantees}
+
+{\bf Assumptions}
+\begin{itemize}
+\item Suppose that each row of $M$ is taken from a distribution $F$, such that
+\begin{itemize}
+ \item $\mathbb{E}_{a \in F}(a a^T) = I_n$
+ \item $\|a\|_{\infty} \leq \mu$
+\end{itemize}
+\item Suppose that w.h.p $\| M^T \epsilon \|_{\infty} \leq 2.5 \sqrt{\log n} $
+\end{itemize}
+
+{\bf Theorem \cite{candes}}
+
+If node $i$ has degree $\Delta$ and $n_{\text{rows}}(M) \geq C \mu \Delta \log n$, then, w.h.p.,
+
+$$\| \hat x - x^* \|_2 \leq C (1 + \log^{3/2}(n))\sqrt{\frac{\Delta \log n}{m}}$$
+
+{\bf Discussion}
+
+\begin{itemize}
+\item If we consider $M/p_{init}$, then $\mathbb{E}_{a \in F}(a a^T) \approx I_n$
+\item $\mathbb{E}(\epsilon) = 0$, hence $\| M^T \epsilon \|_{\infty} \leq 2.5 \sqrt{\log n}$ should hold w.h.p
+\end{itemize}
+
+\end{block}
+
+
+\begin{block}{Restriced Isometry Property (RIP)}
+{\bf Definition}
+\begin{itemize}
+\item The Restricted Isometry Property (RIP) characterizes a quasi-orthonormality of the measurement matrix M on sparse vectors.
+
+\item For all k, we define $\delta_k$ as the best possible constant such that for all unit-normed ($l$2) and k-sparse vectors $x$:
+
+\begin{equation}
+1-\delta_k \leq \|Mx\|^2_2 \leq 1 + \delta_k \nonumber
+\end{equation}
+
+\item In general, the smaller $\delta_k$ is, the better we can recover $k$-sparse vectors $x$!
+\end{itemize}
+
+{\bf Relevance}
+\begin{itemize}
+\item Commonly studied in stable sparse recovery
+\item $\mathbb{E}_{a \in F}(a a^T) \approx I_n$ + RIP property (with $\delta = \frac{1}{4}$) should get similar conclusion as above
+\end{itemize}
+
+
+
+\end{block}
+
+
+
+%----------------------------------------------------------------------------------------
+% RESULTS
+%----------------------------------------------------------------------------------------
+
+\begin{block}{Description of Experiments}
+
+
+
+\end{block}
+
+%----------------------------------------------------------------------------------------
+
+
+\end{column} % End of the second column
+
+\begin{column}{\sepwid}\end{column} % Empty spacer column
+
+\begin{column}{\onecolwid} % The third column
+
+%----------------------------------------------------------------------------------------
+% IOVERALL COMPARISON
+%----------------------------------------------------------------------------------------
+
+%\vspace{- 14.2 cm}
+%\begin{center}
+%{\includegraphics[height=7em]{cmu_logo.png}} % First university/lab logo on the left
+%\end{center}
+
+%\vspace{4 cm}
+
+\begin{alertblock}{Experimental Results}
+
+
+
+
+\end{alertblock}
+
+%----------------------------------------------------------------------------------------
+
+
+%----------------------------------------------------------------------------------------
+% CONCLUSION
+%----------------------------------------------------------------------------------------
+
+\begin{block}{Conclusion}
+
+
+\end{block}
+
+%----------------------------------------------------------------------------------------
+% REFERENCES
+%----------------------------------------------------------------------------------------
+
+\begin{block}{References}
+
+\begin{thebibliography}{42}
+
+\bibitem{candes}
+Candès, E., and Plan, Y.
+\newblock {\it A Probabilistic and RIPless Theory of Compressed Sensing}
+\newblock Information Theory, IEEE Transactions on, 57(11): 7235--7254,
+\newblock 2011.
+\end{thebibliography}
+
+\end{block}
+
+%----------------------------------------------------------------------------------------
+
+\end{column} % End of the third column
+
+\end{columns} % End of all the columns in the poster
+
+\end{frame} % End of the enclosing frame
+
+
+
+\end{document}