aboutsummaryrefslogtreecommitdiffstats
path: root/notes/cracking_cascades_classposter.tex
diff options
context:
space:
mode:
Diffstat (limited to 'notes/cracking_cascades_classposter.tex')
-rw-r--r--notes/cracking_cascades_classposter.tex461
1 files changed, 0 insertions, 461 deletions
diff --git a/notes/cracking_cascades_classposter.tex b/notes/cracking_cascades_classposter.tex
deleted file mode 100644
index 3f8204e..0000000
--- a/notes/cracking_cascades_classposter.tex
+++ /dev/null
@@ -1,461 +0,0 @@
-\documentclass[final]{beamer}
-\usepackage[utf8]{inputenc}
-\usepackage[scale=1.6]{beamerposter} % Use the beamerposter package for laying out the poster
-
-\usetheme{confposter} % Use the confposter theme supplied with this template
-
-\usepackage{color, bbm}
-\setbeamercolor{block title}{fg=dblue,bg=white} % Colors of the block titles
-\setbeamercolor{block body}{fg=black,bg=white} % Colors of the body of blocks
-\setbeamercolor{block alerted title}{fg=white,bg=dblue!70} % Colors of the highlighted block titles
-\setbeamercolor{block alerted body}{fg=black,bg=dblue!10} % Colors of the body of highlighted blocks
-% Many more colors are available for use in beamerthemeconfposter.sty
-
-%-----------------------------------------------------------
-% Define the column widths and overall poster size
-% To set effective sepwid, onecolwid and twocolwid values, first choose how many columns you want and how much separation you want between columns
-% In this template, the separation width chosen is 0.024 of the paper width and a 4-column layout
-% onecolwid should therefore be (1-(# of columns+1)*sepwid)/# of columns e.g. (1-(4+1)*0.024)/4 = 0.22
-% Set twocolwid to be (2*onecolwid)+sepwid = 0.464
-% Set threecolwid to be (3*onecolwid)+2*sepwid = 0.708
-
-\newlength{\sepwid}
-\newlength{\onecolwid}
-\newlength{\twocolwid}
-\newlength{\threecolwid}
-\setlength{\paperwidth}{48in} % A0 width: 46.8in
-\setlength{\paperheight}{40in} % A0 height: 33.1in
-\setlength{\sepwid}{0.024\paperwidth} % Separation width (white space) between columns
-\setlength{\onecolwid}{0.22\paperwidth} % Width of one column
-\setlength{\twocolwid}{0.464\paperwidth} % Width of two columns
-\setlength{\threecolwid}{0.708\paperwidth} % Width of three columns
-\setlength{\topmargin}{-1in} % Reduce the top margin size
-%-----------------------------------------------------------
-
-\usepackage{graphicx} % Required for including images
-
-\usepackage{booktabs} % Top and bottom rules for tables
-
-
-
-%----------------------------------------------------------------------------------------
-% TITLE SECTION
-%----------------------------------------------------------------------------------------
-
-\title{Sparse Recovery for Graph Reconstruction } % Poster title
-
-\author{Eric Balkanski, Jean Pouget-Abadie} % Author(s)
-
-\institute{Harvard University} % Institution(s)
-%----------------------------------------------------------------------------------------
-\begin{document}
-\addtobeamertemplate{block end}{}{\vspace*{2ex}} % White space under blocks
-\addtobeamertemplate{block alerted end}{}{\vspace*{2ex}} % White space under highlighted (alert) blocks
-
-\setlength{\belowcaptionskip}{2ex} % White space under figures
-\setlength\belowdisplayshortskip{2ex} % White space under equations
-
-\begin{frame}[t] % The whole poster is enclosed in one beamer frame
-
-\begin{columns}[t] % The whole poster consists of three major columns, the second of which is split into two columns twice - the [t] option aligns each column's content to the top
-
-\begin{column}{\sepwid}\end{column} % Empty spacer column
-
-\begin{column}{\onecolwid} % The first column
-
-%----------------------------------------------------------------------------------------
-% INTODUCTION
-%----------------------------------------------------------------------------------------
-
-
-%\vspace{- 15.2 cm}
-%\begin{center}
-%{\includegraphics[height=7em]{logo.png}} % First university/lab logo on the left
-%\end{center}
-
-%\vspace{4.6 cm}
-
-\begin{block}{Problem Statement}
-\begin{center}
-\bf{How can we reconstruct a graph on which observed cascades spread?}
-\end{center}
-\end{block}
-
-
-%{\bf Graph Reconstruction}:
-
-%\begin{itemize}
-%\item \{${\cal G}, \vec p$\}: directed graph, edge probabilities
-%\item $F$: cascade generating model
-%\item ${\cal M} := F\{{\cal G}, \vec p\}$: cascade
-%\end{itemize}
-
-%{\bf Objective}:
-%\begin{itemize}
-%\item Find algorithm which computes $F^{-1}({\cal M}) = \{{\cal G}, \vec p\}$ w.h.p., i.e. recovers graph from cascades.
-%\end{itemize}
-
-%{\bf Approach}
-%\begin{itemize}
-%\item Frame graph reconstruction as a {\it Sparse Recovery} problem for two cascade generating models.
-%\end{itemize}
-
-%Given a set of observed cascades, the \textbf{graph reconstruction problem} consists of finding the underlying graph on which these cascades spread. We assume that these cascades come from the classical \textbf{Independent Cascade Model} where at each time step, newly infected nodes infect each of their neighbor with some probability.
-
-%In previous work, this problem has been formulated in different ways, including a convex optimization and a maximum likelihood problem. However, there is no known algorithm for graph reconstruction with theoretical guarantees and with a reasonable required sample size.
-
-%We formulate a novel approach to this problem in which we use \textbf{Sparse Recovery} to find the edges in the unknown underlying network. Sparse Recovery is the problem of finding the sparsest vector $x$ such that $\mathbf{M x =b}$. In our case, for each node $i$, we wish to recover the vector $x = p_i$ where $p_{i_j}$ is the probability that node $j$ infects node $i$ if $j$ is active. To recover this vector, we are given $M$, where row $M_{t,k}$ indicates which nodes are infected at time $t$ in observed cascade $k$, and $b$, where $b_{t+1,k}$ indicates if node $i$ is infected at time $t+1$ in cascade $k$. Since most nodes have a small number of neighbors in large networks, we can assume that these vectors are sparse. Sparse Recovery is a well studied problem which can be solved efficiently and with small error if $M$ satisfies certain properties. In this project, we empirically study to what extent $M$ satisfies the Restricted Isometry Property.
-
-
-%---------------------------------------------------------------------------------
-%---------------------------------------------------------------------------------
-
-\begin{block}{Voter Model}
-
-\begin{figure}
-\centering
-\includegraphics[width=0.6\textwidth]{images/voter.png}
-\end{figure}
-
-
-
-\vspace{0.5 cm}
-{\bf Description}
-
-\vspace{0.5 cm}
-
-\begin{itemize}
-\item $\mathbb{P}$({\color{blue} blue} at $t=0) = p_{\text{init}}$
-\item $\mathbb{P}$({\color{blue} blue} at $t+1) = \frac{\text{Number of {\color{blue}blue} neighbors}}{\text{Total number of neighbors}}$
-\end{itemize}
-
-\vspace{0.5 cm}
-
-{\bf Sparse Recovery Formulation}
-
-\vspace{0.5 cm}
-
-
-To recover the neighbors of $v_1$, observe which nodes are {\color{red} red} (1) or {\color{blue} blue} (0) at time step $t$:
-\begin{align*}
-&v_2 \hspace{0.2 cm} v_3 \hspace{0.2 cm} v_4 \hspace{0.2 cm} v_5 &\\
-\vspace{1 cm}
-M = & \left( \begin{array}{cccc}
-0 & 0 & 1 & 1 \\
-1 & 1 & 0 & 0 \\
-\end{array} \right) & \begin{array}{l} \hspace{ - 5cm}
-\text{time step 0} \\
- \hspace{ - 5cm} \text{time step 1} \\
-\end{array}
-\end{align*}
-
-and which color $v_1$ is at time step $t+1$ due to $M$:
-
-\begin{align*}
-b_1 = & \left( \begin{array}{c}
-1 \\
-1 \\
-\end{array} \right) & \begin{array}{l} \hspace{ - 5cm}
-\text{time step 1} \\
- \hspace{ - 5cm} \text{time step 2} \\
- \end{array}
-\end{align*}
-
-Then ,
-
-\begin{equation}
-\boxed{M \vec x_1 = \vec b_1 + \epsilon \nonumber}
-\end{equation}
-
-where $(\vec x_{1})_j := \frac{\text{1}}{\text{deg}(i)} \cdot \left[\text{j parent of 1 in }{\cal G}\right] $
-
-
-\end{block}
-
-
-
-
-
-%---------------------------------------------------------------------------------
-%---------------------------------------------------------------------------------
-
-
-%---------------------------------------------------------------------------------
-%---------------------------------------------------------------------------------
-
-
-
-
-
-
-%---------------------------------------------------------------------------------
-%---------------------------------------------------------------------------------
-
-
-
-\end{column} % End of the first column
-
-\begin{column}{\sepwid}\end{column} % Empty spacer column
-
-\begin{column}{\onecolwid} % The first column
-
-%----------------------------------------------------------------------------------------
-% CONSTRAINT SATISFACTION - BACKTRACKING
-%----------------------------------------------------------------------------------------
-\begin{block}{Independent Cascades Model}
-\begin{figure}
-\centering
-\includegraphics[width=0.6\textwidth]{images/icc.png}
-\end{figure}
-
-\vspace{0.5 cm}
-
-{\bf Description}
-
-\vspace{0.5 cm}
-
-\begin{itemize}
-\item Three possible states: {\color{blue} susceptible}, {\color{red} infected}, {\color{yellow} inactive }
-\item $\mathbb{P}$(infected at t=0)$=p_{\text{init}}$
-\item Infected node $j$ infects its susceptible neighbors $i$ with probability $p_{j,i}$ independently
-\end{itemize}
-
-\vspace{0.5 cm}
-
-{\bf Sparse Recovery Formulation}
-
-\vspace{0.5 cm}
-
-To recover the neighbors of $v_5$,observe which nodes are {\color{red} red} (1), {\color{blue} blue} (0), or {\color{yellow} yellow} (0) at time step $t$:
-\begin{align*}
-&v_1 \hspace{0.2 cm} v_2 \hspace{0.2 cm} v_3 \hspace{0.2 cm} v_4 \\
-\vspace{1 cm}
-M = & \left( \begin{array}{cccc}
-1 & 0 & 0 & 0 \\
-0 & 1 & 1 & 0 \\
-\end{array} \right) \begin{array}{l} \hspace{ 1cm}
-\text{time step 0} \\
- \hspace{ 1cm} \text{time step 1} \\
- \end{array}
-\end{align*}
-
-and if $M$ caused $v_5$ to be infected at time step $t+1$:
-
-\begin{align*}
-b_5 = & \left( \begin{array}{c}
-0 \\
-1 \\
-\end{array} \right) \begin{array}{l} \hspace{ 1cm}
-\text{time step 1} \\
- \hspace{ 1cm} \text{time step 2} \\
- \end{array}
-\end{align*}
-
-
-Then,
-
-\begin{equation}
-\boxed{e^{M \vec \theta_5} = (1 - \vec b_5) + \epsilon} \nonumber
-\end{equation}
-
-where $(\vec \theta_5)_j := \log ( 1 - p_{j,5}) $
-
-\vspace{1 cm}
-
-
-This problem is a {\bf Noisy Sparse Recovery} problem, which has been studied extensively. Here, the vectors $\vec x_i$ are deg(i)-sparse.
-
-
-\end{block}
-
-%----------------------------------------------------------------------------------------
-
-
-
-
-
-
-
-
-
-%----------------------------------------------------------------------------------------
-% MIP
-%----------------------------------------------------------------------------------------
-
-% \begin{block}{RIP property}
-
-% %The Restricted Isometry Property (RIP) characterizes a quasi-orthonormality of the measurement matrix M on sparse vectors.
-
-% For all k, we define $\delta_k$ as the best possible constant such that for all unit-normed ($l$2) and k-sparse vectors $x$
-
-% \begin{equation}
-% 1-\delta_k \leq \|Mx\|^2_2 \leq 1 + \delta_k
-% \end{equation}
-
-% In general, the smaller $\delta_k$ is, the better we can recover $k$-sparse vectors $x$!
-
-% \end{block}
-
-%----------------------------------------------------------------------------------------
-
-\end{column}
-
-\begin{column}{\sepwid}\end{column} % Empty spacer column
-
-\begin{column}{\onecolwid} % The first column within column 2 (column 2.1)
-
-
-%----------------------------------------------------------------------------------------
-
-
-\begin{block}{Algorithms}
-
-{\bf Voter Model}
-
-\begin{itemize}
-\item Solve for each node i:
-\begin{equation}
-\min_{\vec x_i} \|\vec x_i\|_1 + \lambda \|M \vec x_i - \vec b_i \|_2 \nonumber
-\end{equation}
-\end{itemize}
-
-{\bf Independent Cascade Model}
-
-\begin{itemize}
-\item Solve for each node i:
-\begin{equation}
-\min_{\vec \theta_i} \|\vec \theta_i\|_1 + \lambda \|e^{M \vec \theta_i} - (1 - \vec b_i) \|_2 \nonumber
-\end{equation}
-\end{itemize}
-
-\end{block}
-
-\begin{block}{Restricted Isometry Property (RIP)}
-{\bf Definition}
-\begin{itemize}
-\item Characterizes a quasi-orthonormality of M on sparse vectors.
-
-\item The RIP constant $\delta_k$ is the best possible constant such that for all unit-normed ($l$2) and k-sparse vectors $x$:
-
-\begin{equation}
-1-\delta_k \leq \|Mx\|^2_2 \leq 1 + \delta_k \nonumber
-\end{equation}
-
-\item The smaller $\delta_k$ is, the better we can recover $k$-sparse vectors $x$.
-\end{itemize}
-
-
-
-
-\end{block}
-
-\begin{block}{Theoretical Guarantees}
-
-With small RIP constants $(\delta \leq 0.25)$ for $M$ and some assumption on the noise $\epsilon$:
-
-{\bf Theorem \cite{candes}}
-
-If node $i$ has degree $\Delta$ and $n_{\text{rows}}(M) \geq C_1 \mu \Delta \log n$, then, w.h.p.,
-
-$$\| \hat x - x^* \|_2 \leq C (1 + \log^{3/2}(n))\sqrt{\frac{\Delta \log n}{n_{\text{rows}}(M) }}$$
-
-
-\end{block}
-
-
-
-
-%----------------------------------------------------------------------------------------
-% RESULTS
-%----------------------------------------------------------------------------------------
-
-\begin{block}{RIP Experiments}
-
-\begin{center}
-\begin{table}
-\begin{tabular}{c | c | c | c | c }
-& $c$ = 100, &$c$ = 1000,& $c$ = 100, &$c$ = 1000,\\
-& $i$ = 0.1& $i$ = 0.1& $i$ = 0.05& $i$ = 0.05\\
- \hline
- $\delta_4$ & 0.54 & 0.37 &0.43&0.23 \\
- \end{tabular}
- \caption{RIP constant for a small graph. Here, $c$ is the number of cascades and $i$ is $p_{\text{init}}$.}
-\end{table}
-\end{center}
-
-
-\end{block}
-
-%----------------------------------------------------------------------------------------
-
-
-\end{column} % End of the second column
-
-\begin{column}{\sepwid}\end{column} % Empty spacer column
-
-\begin{column}{\onecolwid} % The third column
-
-%----------------------------------------------------------------------------------------
-% IOVERALL COMPARISON
-%----------------------------------------------------------------------------------------
-
-%\vspace{- 14.2 cm}
-%\begin{center}
-%{\includegraphics[height=7em]{cmu_logo.png}} % First university/lab logo on the left
-%\end{center}
-
-%\vspace{4 cm}
-
-\begin{alertblock}{Experimental Results}
-
-
-
-
-\end{alertblock}
-
-%----------------------------------------------------------------------------------------
-
-
-%----------------------------------------------------------------------------------------
-% CONCLUSION
-%----------------------------------------------------------------------------------------
-
-\begin{block}{Conclusion}
-
-\begin{center}
-
-
-{\bf Graph reconstruction can naturally be expressed as Sparse Recovery. Understanding properties of $M$, for example RIP, leads to theoretical guarantees on the reconstruction.}
-
-\end{center}
-
-\end{block}
-
-%----------------------------------------------------------------------------------------
-% REFERENCES
-%----------------------------------------------------------------------------------------
-
-\begin{block}{References}
-
-\begin{thebibliography}{42}
-
-\bibitem{candes}
-Candès, E., and Plan, Y.
-\newblock {\it A Probabilistic and RIPless Theory of Compressed Sensing}
-\newblock Information Theory, IEEE Transactions on, 57(11): 7235--7254,
-\newblock 2011.
-\end{thebibliography}
-
-\end{block}
-
-%----------------------------------------------------------------------------------------
-
-\end{column} % End of the third column
-
-\end{columns} % End of all the columns in the poster
-
-\end{frame} % End of the enclosing frame
-
-
-
-\end{document}