diff options
Diffstat (limited to 'notes/presentation/beamer_2.tex')
| -rw-r--r-- | notes/presentation/beamer_2.tex | 397 |
1 files changed, 0 insertions, 397 deletions
diff --git a/notes/presentation/beamer_2.tex b/notes/presentation/beamer_2.tex deleted file mode 100644 index ecc66ed..0000000 --- a/notes/presentation/beamer_2.tex +++ /dev/null @@ -1,397 +0,0 @@ -\documentclass[10pt]{beamer} - -\usepackage{amssymb, amsmath, graphicx, amsfonts, color, amsthm, wasysym} - -\newtheorem{proposition}{Proposition} - -\title{Learning from Diffusion processes} -\subtitle{What cascades really teach us about networks} -\author{Jean (John) Pouget-Abadie \\ Joint Work with Thibaut (T-bo) Horel} - -\begin{document} - -\begin{frame} -\titlepage -\end{frame} - -\begin{frame} -\frametitle{Introduction} - -%notes: Learn what? the network, the parameters of the diffusion process. - -\begin{table} -\centering -\begin{tabular}{c | c} -Network & Diffusion process \\[1ex] -\hline -\\ -Airports & Infectious diseases (SARS) \\ - & Delays (Eyjafjallajökull) \\[3ex] -Social Network & Infectious diseases (flu) \\ - & Behaviors (Ice Bucket Challenge) \\[3ex] -Internet/WWW & Information diffusion (Memes, Pirated content \dots) -\end{tabular} -\end{table} - -\end{frame} - -%%%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Introduction} - -What do we know? What do we want to know? - -\begin{itemize} -\item We know the {\bf airport network} structure. We observe delays. Can we learn how delays propagate? -\item We (sometimes) know the {\bf social network}. We observe behaviors. Can we learn who influences whom? -\item Rarely know {\bf blog network}. We observe discussions. Can we learn who learns from whom? -\end{itemize} - -\end{frame} - -%%%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Independent Cascade Model} - -\begin{figure} -\includegraphics[scale=.3]{figures/weighted_graph.png} -\caption{Weighted, directed graph} -\end{figure} - -\begin{itemize} -\item At $t=0$, nodes are in three possible states: susceptible, {\color{blue} infected}, {\color{red} dead} -\pause -\item At time step $t$, each {\color{blue} infected} node $i$ has a ``one-shot'' probability $p_{i,j}$ of infecting each of his susceptible neighbors $j$ at $t+1$. -\pause -\item A node stays {\color{blue} infected} for one round, then it {\color{red} dies} -\pause -\item At $t=0$, each node is {\color{blue} infected} with probability $p_{\text{init}}$ -\pause -\item Process continues until random time $T$ when no more nodes can become infected. -\pause -\item $X_t$: set of {\color{blue} infected} nodes at time $t$ -\pause -\item A {\bf cascade} is an instance of the ICC model: $(X_t)_{t=0, t=T}$ -\end{itemize} - -%Notes: Revisit the celebrated independent cascade model -> Influence maximisation is tractable, requires knowledge of weights - -\end{frame} - -%%%%%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Independent Cascade Model} - -\begin{figure} -\includegraphics[scale=.5]{figures/weighted_graph.png} -\caption{Weighted, directed graph} -\end{figure} - -\begin{block}{Example} -\begin{itemize} -\item At $t=0$, the {\color{orange} orange} node is infected, and the two other nodes are susceptible. $X_0 = $({\color{orange} orange}) -\item At $t=1$, the {\color{orange}} node infects the {\color{blue} blue} node and fails to infect the {\color{green} green} node. The {\color{orange} orange} node dies. $X_1 = $({\color{blue} blue}) -\item At $t=2$, {\color{blue} blue} dies. $X_2 = \emptyset$ -\end{itemize} -\end{block} - -\end{frame} - -%%%%%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Independent Cascade Model} - -\begin{figure} -\includegraphics[scale=.5]{figures/weighted_graph.png} -\caption{Weighted, directed graph} -\end{figure} - -\begin{itemize} -\item If the {\color{orange} orange} node and the {\color{green} green} node are infected at $t=0$, what is the probability that the {\color{blue} blue} node is infected at $t=1$? -$$1 - \mathbb{P}(\text{not infected}) = 1 - (1 - .45)(1-.04)$$ -\end{itemize} - - -\end{frame} - -%%%%%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Independent Cascade Model} -\begin{figure} -\includegraphics[scale=.5]{figures/weighted_graph.png} -\caption{Weighted, directed graph} -\end{figure} - -\begin{itemize} -\item In general, for each susceptible node $j$: -$$\mathbb{P}(j \text{ becomes infected at t+1}|X_{t}) = 1 - \prod_{i \in {\cal N}(j) \cap X_{t}} (1 - p_{i,j})$$ -\end{itemize} - -\end{frame} - - -%%%%%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Independent Cascade Model} -For each susceptible node $j$, the event that it becomes {\color{blue} infected} conditioned on previous time step is a Bernoulli: -$$(j \in X_{t+1} | X_t) \sim {\cal B} \big(f(X_t \cdot \theta_j) \big)$$ -\begin{itemize} -\item $\theta_{i,j} := \log(1 - p_{i,j})$ -\item $\theta_j := (0, 0, 0, \theta_{4,j}, 0 \dots, \theta_{k,j}, \dots)$ -\item $f : x \mapsto 1 - e^x$ -\begin{align*} -\mathbb{P}(j\in X_{t+1}|X_{t}) & = 1 - \prod_{i \in {\cal N}(j) \cap X_{t}} (1 - p_{i,j}) \\ -& = 1 - \exp \left[ \sum_{i \in {\cal N}(j) \cap X_{t}} \log(1 - p_{i,j}) \right] \\ -& = 1 - \exp \left[ X_{t} \cdot \theta_{j}\right] -\end{align*} -\end{itemize} -\end{frame} - - - -%%%%%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Independent Cascade Model} -For each susceptible node $j$, the event that it becomes {\color{blue} infected} conditioned on previous time step is a Bernoulli: -$$(j \in X_{t+1} | X_t) \sim {\cal B} \big(f(X_t \cdot \theta_j) \big)$$ - -\begin{block}{Decomposability} -\begin{itemize} -\item Conditioned on $X_t$, the state of the nodes at the next time step are mutually independent -\item We can learn the parents of each node independently -\end{itemize} -\end{block} - -\begin{block}{Sparsity} -\begin{itemize} -\item $\theta_{i,j} = 0 \Leftrightarrow \log(1 - p_{i,j}) = 0 \Leftrightarrow p_{i,j} = 0$ -\item If graph is ``sparse'', then $p_{j}$ is sparse, then $\theta_j$ is sparse. -\end{itemize} -\end{block} -\end{frame} - - - -%%%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Learning from Diffusion Processes} -\begin{block}{Problem Statement} -\begin{itemize} -\item We are given a graph ${\cal G}$, and a diffusion process $f$ parameterized by $\left((\theta_j)_j, p_{\text{init}}\right)$. -\item Suppose we {\bf only} observe $(X_t)$ from the diffusion process. -\item Under what conditions can we learn $\theta_{i,j}$ for all $(i,j)$? -\end{itemize} -\end{block} -\end{frame} - -%%%%%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Sparse Recovery} -\begin{figure} -\includegraphics[scale=.6]{../images/sparse_recovery_illustration_copy.pdf} -\caption{$\mathbb{P}(j \in X_{t+1}| X_t) = f(X_t\cdot \theta)$} -\end{figure} -\end{frame} - - - -%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Learning from Diffusion Processes} - -% \begin{figure} -% \includegraphics[scale=.4]{../images/sparse_recovery_illustration.pdf} -% \caption{Generalized Cascade Model for node $i$} -% \end{figure} - -\begin{block}{Likelihood Function} -\begin{align*} -{\cal L}(\theta_1, \dots, \theta_m| X_1, \dots X_n) = \sum_{i=1}^m \sum_{t} & X_{t+1}^i \log f(\theta_i \cdot X_t) + \\ -& (1 - X_{t+1}^i) \log(1 - f(\theta_i \cdot X_t)) -\end{align*} -\end{block} - -\begin{block}{MLE} -For each node $i$, $$\theta_i \in \arg \max \frac{1}{n_i}{\cal {L}}_i(\theta_i | X_1, X_2, \dots, X_{n_i}) - \lambda \|\theta_i\|_1$$ -\end{block} - -\end{frame} - -%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Conditions} -\begin{block}{On $f$} -\begin{itemize} -\item $\log f$ and $\log (1-f)$ have to be concave -\item $\log f$ and $\log (1-f)$ have to have bounded gradient -\end{itemize} -\end{block} - -\begin{block}{On $(X_t)$} -\begin{itemize} -\item Want ${\cal H}$, the hessian of ${\cal L}$ with respect to $\theta$, to be well-conditioned. -\item $ n < dim(\theta) \implies {\cal H}$ is degenerate. -\item {\bf Restricted Eigenvalue condition} = ``almost invertible'' on sparse vectors. -\end{itemize} -\end{block} - -\end{frame} - -%%%%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Restricted Eigenvalue Condition} - -\begin{definition} -For a set $S$, -$${\cal C} := \{ \Delta : \|\Delta\|_2 = 1, \|\Delta_{\bar S}\|_1 \leq 3 \| \Delta_S\|_1 \}$$ -${\cal H}$ verifies the $(S, \gamma)$-RE condition if: -$$\forall \Delta \in {\cal C}, \Delta {\cal H} \Delta \geq \gamma$$ -\end{definition} -\end{frame} -%%%%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Main Result} -Adapting a result from \cite{Negahban:2009}, we have the following theorem: - -\begin{theorem} -For node $i$, assume -\begin{itemize} -\item the Hessian verifies the $(S,\gamma)$-RE condition where $S$ is the set of parents of node $i$ (support of $\theta_i$) -\item $f$ and $1-f$ are log-concave -\item $|(\log f)'| < \frac{1}{\alpha}$ and $|(\log 1- f)'| < \frac{1}{\alpha}$ -\end{itemize} then with high probability: -$$\| \theta^*_i - \hat \theta_i \|_2 \leq \frac{6}{\gamma}\sqrt{\frac{s\log m}{\alpha n}}$$ -\end{theorem} - -\begin{corollary} -By thresholding $\hat \theta_i$, if $n > C' s \log m$, we recover the support of $\theta^*$ and therefore the edges of ${\cal G}$ -\end{corollary} - -\end{frame} - -%%%%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Main result} - -\begin{block}{Correlation} -\begin{itemize} -\item Positive result despite correlated measurements \smiley -\item Independent measurements $\implies$ taking one measurement per cascade. -\end{itemize} -\end{block} - -\begin{block}{Statement w.r.t observations and not the model} -\begin{itemize} -\item The Hessian must verify the $(S,\gamma)$-RE condition \frownie -\item Can we make a conditional statement on $\theta$ and not $X_t$? -\end{itemize} -\end{block} - -\end{frame} - -%%%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Restricted Eigenvalue Condition} - -\begin{block}{From Hessian to Gram Matrix} -\begin{itemize} -\item If $\log f$ and $\log 1 -f$ are strictly log-concave with constant $c$, then if $(S, \gamma)$-RE holds for the gram matrix $\frac{1}{n}X X^T$ , then $(S, c \gamma)$-RE holds for ${\cal H}$ -\end{itemize} -\end{block} - -\begin{block}{From Gram Matrix to Expected Gram Matrix} -\begin{itemize} -\item If $n > C' s^2 \log m$ and $(S, \gamma)$-RE holds for $\mathbb{E}(\frac{1}{n}XX^T)$, then $(S, \gamma/2)$-RE holds for $\frac{1}{n}XX^T$ w.h.p -\item $\mathbb{E}(\frac{1}{n}XX^T)$ only depends on $p_{\text{init}}$ and $(\theta_j)_j$ -\end{itemize} -\end{block} - -\begin{block}{Expected Gram Matrix} -\begin{itemize} -\item Diagonal : average number of times node is infected -\item Outer-diagonal : average number of times pair of nodes is infected {\emph together} -\end{itemize} -\end{block} - -\end{frame} - -%%%%%%%%%%%%%%%%%%% -\begin{frame} -\frametitle{Approximate Sparsity} -\begin{itemize} -\item $\theta^*_{\lceil s \rceil}$ best s-sparse approximation to $\theta^*$ -\item $\|\theta^* - \theta^*_{\lceil s \rceil} \|_1$: `tail' of $\theta^*$ -\end{itemize} -\begin{theorem} -Under similar conditions on $f$ and a relaxed RE condition, there $\exists C_1, C_2>0$ such that with high probability: -\begin{equation} -\|\hat \theta_i - \theta^*_i\|_2 \leq C_1 \sqrt{\frac{s\log m}{n}} + C_2 \sqrt[4]{\frac{s\log m}{n}}\|\theta^* - \theta^*_{\lceil s \rceil} \|_1 -\end{equation} -\end{theorem} -\end{frame} - -%%%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Lower Bound} -\begin{itemize} -\item Under correlation decay assumption for the IC model, ${\Omega}(s \log N/s)$ cascades necessary for graph reconstruction (Netrapalli et Sanghavi SIGMETRICS'12) -\item Adapting (Price \& Woodruff STOC'12), in the approximately sparse case, any algorithm for any generalized linear cascade model such that: -$$\|\hat \theta - \theta^*\|_2 \leq C \|\theta^* - \theta^*_{\lfloor s \rfloor}\|_2$$ -requires ${\cal O}(s \log (n/s)/\log C)$ measurement. -\end{itemize} -\end{frame} - -%%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Voter Model} -\begin{itemize} -\pause -\item {\color{red} Red} and {\color{blue} Blue} nodes. At every step, each node $i$ chooses one of its neighbors $j$ with probability $p_{j,i}$ and adopts that color at $t+1$ -\pause -\item If {\color{blue} Blue} is `contagious' state: -\pause -\begin{equation} -\nonumber -\mathbb{P}(i \in X^{t+1}|X^t) = \sum_{j \in {\cal N}(i)\cap X^t} p_{ji} = X^t \cdot \theta_i -\end{equation} -\end{itemize} -\end{frame} - -%%%%%%%%%%%%%%%%%%%%%%% - -\begin{frame} -\frametitle{Future Work} -\begin{itemize} -\item Lower bound restricted eigenvalues of expected gram matrix -\item Confidence Intervals -\item Show that $n > C' s \log m$ measurements are necessary w.r.t. expected hessian. -\item Linear Threshold model $\rightarrow$ 1-bit compressed sensing formulation -\item Better lower bounds -\item Active Learning -\end{itemize} -\end{frame} - - -%%%%%%%%%%%%%%%%% - -\bibliography{../../paper/sparse} -\bibliographystyle{apalike} - -\end{document}
\ No newline at end of file |
