diff options
Diffstat (limited to 'paper/sections/appendix.tex')
| -rw-r--r-- | paper/sections/appendix.tex | 37 |
1 files changed, 36 insertions, 1 deletions
diff --git a/paper/sections/appendix.tex b/paper/sections/appendix.tex index ff4c5dd..afcf186 100644 --- a/paper/sections/appendix.tex +++ b/paper/sections/appendix.tex @@ -1,10 +1,45 @@ \subsection{Proof for different lemmas} \subsubsection{Bounded gradient} + +\begin{proof} +The gradient of $\mathcal{L}$ is given by: +\begin{multline*} + \nabla \mathcal{L}(\theta^*) = + \frac{1}{|\mathcal{T}|}\sum_{t\in \mathcal{T}}x^t\bigg[ + x_i^{t+1}\frac{f'}{f}(\inprod{\theta^*}{x^t})\\ + - (1-x_i^{t+1})\frac{f'}{1-f}(\inprod{\theta^*}{x^t})\bigg] +\end{multline*} + +Let $\partial_j \mathcal{L}(\theta)$ be the $j$-th coordinate of +$\nabla\mathcal{L}(\theta^*)$. Writing +$\partial_j\mathcal{L}(\theta^*) += \frac{1}{|\mathcal{T}|}\sum_{t\in\mathcal{T}} Y_t$ and since +$\E[x_i^{t+1}|x^t]= f(\inprod{\theta^*}{x^t})$, we have that $\E[Y_{t+1}|Y_t] += 0$. Hence $Z_t = \sum_{k=1}^t Y_k$ is a martingale. + +Using assumption (LF), we have almost surely $|Z_{t+1}-Z_t|\leq +\frac{1}{\alpha}$ and we can apply Azuma's inequality to $Z_t$: +\begin{displaymath} + \P\big[|Z_{\mathcal{T}}|\geq \lambda\big]\leq + 2\exp\left(\frac{-\lambda^2\alpha}{2n}\right) +\end{displaymath} + +Applying a union bound to have the previous inequality hold for all coordinates +of $\nabla\mathcal{L}(\theta)$ implies: +\begin{align*} + \P\big[\|\nabla\mathcal{L}(\theta^*)\|_{\infty}\geq \lambda \big] + &\leq 2m\exp\left(\frac{-\lambda^2n\alpha}{2}\right) +\end{align*} +Choosing $\lambda\defeq 2\sqrt{\frac{\log m}{\alpha n^{1-\delta}}}$ concludes +the proof. +\end{proof} + \subsubsection{Approximate sparsity proof} \subsubsection{RE with high probability} -\subsection{Other continuous time processes binned to ours: prop. hazards model} +\subsection{Other continuous time processes binned to ours: proportional +hazards model} \subsection{Irrepresentability vs. Restricted Eigenvalue Condition} In the words and notation of Theorem 9.1 in \cite{vandegeer:2009}: |
