aboutsummaryrefslogtreecommitdiffstats
path: root/paper/sections/model.tex
diff options
context:
space:
mode:
Diffstat (limited to 'paper/sections/model.tex')
-rw-r--r--paper/sections/model.tex3
1 files changed, 2 insertions, 1 deletions
diff --git a/paper/sections/model.tex b/paper/sections/model.tex
index 25f55e0..d3403ef 100644
--- a/paper/sections/model.tex
+++ b/paper/sections/model.tex
@@ -120,6 +120,7 @@ Therefore, the independent cascade model is a Generalized Linear Cascade model w
\subsection{Maximum Likelihood Estimation}
+\label{sec:mle}
Recovering the model parameter $\Theta$ from observed influence cascades is the
central question of the present work. Recovering the edges in $E$ from observed
@@ -149,7 +150,7 @@ of $m$ terms, each term $i\in\{1,\ldots,m\}$ only depending on $\theta_i$.
Since this is equally true for $\|\Theta\|_1$, each column $\theta_i$ of
$\Theta$ can be estimated by a separate optimization program:
\begin{equation}\label{eq:pre-mle}
- \hat{\theta}_i \in \argmax_{\theta} \frac{1}{n}\mathcal{L}_i(\theta_i\,|\,x^1,\ldots,x^n)
+ \hat{\theta}_i \in \argmax_{\theta} \mathcal{L}_i(\theta_i\,|\,x^1,\ldots,x^n)
- \lambda\|\theta_i\|_1
\end{equation}
where we denote by ${\cal T}_i$ the time steps at which node $i$ is susceptible and: