aboutsummaryrefslogtreecommitdiffstats
path: root/paper/sections/results.tex
diff options
context:
space:
mode:
Diffstat (limited to 'paper/sections/results.tex')
-rw-r--r--paper/sections/results.tex74
1 files changed, 9 insertions, 65 deletions
diff --git a/paper/sections/results.tex b/paper/sections/results.tex
index 54fc587..33bff55 100644
--- a/paper/sections/results.tex
+++ b/paper/sections/results.tex
@@ -92,24 +92,6 @@ $n$, which is different from the number of cascades. For example, in the case
of the voter model with horizon time $T$ and for $N$ cascades, we can expect
a number of measurements proportional to $N\times T$.
-{\color{red} Move this to the model section}
-Before moving to the proof of Theorem~\ref{thm:main}, note that interpreting it
-in the case of the Independent Cascade Model requires one more step. Indeed, to
-cast it as a generalized linear cascade model, we had to perform the
-transformation $\Theta_{i,j} = \log(1-p_{i,j})$, where $p_{i,j}$ are the
-infection probabilities. Fortunately, if we estimate $p_j$ through $\hat{p}_{j}
-= \hat{\theta}_j$, a bound on $\|\hat\theta - \theta^*\|_2$ directly implies
-a bound on $\|\hat p - p^*\|_2$:
-
-\begin{lemma}
- $\|\hat{\theta} - \theta^* \|_2 \geq \|\hat{p} - p^*\|_2$.
-\end{lemma}
-\begin{proof}
-Using the inequality $\forall x>0, \; \log x \geq 1 - \frac{1}{x}$, we have
-$|\log (1 - p) - \log (1-p')| \geq \max(1 - \frac{1-p}{1-p'},
-1 - \frac{1-p'}{1-p}) \geq \max( p-p', p'-p)$.
-\end{proof}
-
Theorem~\ref{thm:main} is a consequence of Theorem~1 in \cite{Negahban:2009}
which gives a bound on the convergence rate of regularized estimators. We state
their theorem in the context of $\ell_1$ regularization in
@@ -155,38 +137,7 @@ Assume {\bf(LF)} holds for some $\alpha>0$. For any $\delta\in(0,1)$:
\end{displaymath}
\end{lemma}
-\begin{proof}
-The gradient of $\mathcal{L}$ is given by:
-\begin{multline*}
- \nabla \mathcal{L}(\theta^*) =
- \frac{1}{|\mathcal{T}|}\sum_{t\in \mathcal{T}}x^t\bigg[
- x_i^{t+1}\frac{f'}{f}(\inprod{\theta^*}{x^t})\\
- - (1-x_i^{t+1})\frac{f'}{1-f}(\inprod{\theta^*}{x^t})\bigg]
-\end{multline*}
-Let $\partial_j \mathcal{L}(\theta)$ be the $j$-th coordinate of
-$\nabla\mathcal{L}(\theta^*)$. Writing
-$\partial_j\mathcal{L}(\theta^*)
-= \frac{1}{|\mathcal{T}|}\sum_{t\in\mathcal{T}} Y_t$ and since
-$\E[x_i^{t+1}|x^t]= f(\inprod{\theta^*}{x^t})$, we have that $\E[Y_{t+1}|Y_t]
-= 0$. Hence $Z_t = \sum_{k=1}^t Y_k$ is a martingale.
-
-Using assumption (LF), we have almost surely $|Z_{t+1}-Z_t|\leq \frac{1}{\alpha}$
-and we can apply Azuma's inequality to $Z_t$:
-\begin{displaymath}
- \P\big[|Z_{\mathcal{T}}|\geq \lambda\big]\leq
- 2\exp\left(\frac{-\lambda^2\alpha}{2n}\right)
-\end{displaymath}
-
-Applying a union bound to have the previous inequality hold for all coordinates
-of $\nabla\mathcal{L}(\theta)$ implies:
-\begin{align*}
- \P\big[\|\nabla\mathcal{L}(\theta^*)\|_{\infty}\geq \lambda \big]
- &\leq 2m\exp\left(\frac{-\lambda^2n\alpha}{2}\right)
-\end{align*}
-Choosing $\lambda\defeq 2\sqrt{\frac{\log m}{\alpha n^{1-\delta}}}$ concludes the
-proof.
-\end{proof}
Note how the proof of Lemma~\ref{lem:ub} relied crucially on Azuma-Hoeffding's
inequality, which allows us to handle correlated observations. We now show how
@@ -203,17 +154,17 @@ i \in \{1,\ldots,m\} :\theta_i^* > \eta +\epsilon \}$ be the set of all true
\frac{9s\log m}{\alpha\gamma^2\epsilon^2}$. Then with probability
$1-\frac{1}{m}$, ${\cal S}^*_{\eta + \epsilon} \subseteq \hat {\cal S}_\eta
\subseteq {\cal S}^*$. In other words we recover all `strong' parents and no
-`false' parents.
+`false' parents.
\end{corollary}
\begin{proof}
-By choosing $\delta = 0$, if $ n > \frac{9s\log
-m}{\alpha\gamma^2\epsilon^2}$, then $\|\hat \theta-\theta^*\|_2 < \epsilon < \eta$
-with probability $1-\frac{1}{m}$. If $\theta_i^* = 0$ and $\hat \theta > \eta$,
-then $\|\hat \theta - \theta^*\|_2 \geq |\hat \theta_i-\theta_i^*| > \eta$, which
-is a contradiction. Therefore we get no false positives. If $\theta_i^* > \eta
-+ \epsilon$, then $|\hat{\theta}_i- \theta_i^*| < \epsilon \implies \theta_j
-> \eta$ and we get all strong parents.
+By choosing $\delta = 0$, if $ n > \frac{9s\log m}{\alpha\gamma^2\epsilon^2}$,
+then $\|\hat \theta-\theta^*\|_2 < \epsilon < \eta$ with probability
+$1-\frac{1}{m}$. If $\theta_i^* = 0$ and $\hat \theta > \eta$, then $\|\hat
+\theta - \theta^*\|_2 \geq |\hat \theta_i-\theta_i^*| > \eta$, which is a
+contradiction. Therefore we get no false positives. If $\theta_i^* > \eta +
+\epsilon$, then $|\hat{\theta}_i- \theta_i^*| < \epsilon \implies \theta_j >
+\eta$ and we get all strong parents.
\end{proof}
Assuming we know a lower bound $\alpha$ on $\Theta_{i,j}$,
@@ -318,13 +269,6 @@ too collinear with each other.
{\color{red} if the function is strictly log-convex, then equivalent -> explain
what the gram matrix is (explanation)}
-{\color{red} move to model section, small example}
-In the specific case of ``logistic cascades'' (when $f$ is the logistic
-function), the Hessian simplifies to $\nabla^2\mathcal{L}(\theta^*)
-= \frac{1}{|\mathcal{T}|}XX^T$ where $X$ is the observation matrix $[x^1 \ldots
-x^\mathcal{|T|}]$. The (RE)-condition is then equivalent
-to the assumption made in the Lasso analysis of \cite{bickel:2009}.
-
\paragraph{(RE) with high probability}
The Generalized Linear Cascade model yields a probability distribution over the
@@ -332,7 +276,7 @@ observed sets of infeceted nodes $(x^t)_{t\in\mathcal{T}}$. It is then natural
to ask whether the restricted eigenvalue condition is likely to occur under
this probabilistic model. Several recent papers show that large classes of
correlated designs obey the restricted eigenvalue property with high
-probability \cite{raskutti:10, rudelson:13}.
+probability \cite{raskutti:10, rudelson:13}.
In our case, we can show that if (RE)-condition holds for the expected Hessian
matrix $\E[\nabla^2\mathcal{L}(\theta^*)]$, then it holds for the finite sample