diff options
Diffstat (limited to 'poster/WWW_poster/poster.tex')
| -rw-r--r-- | poster/WWW_poster/poster.tex | 289 |
1 files changed, 289 insertions, 0 deletions
diff --git a/poster/WWW_poster/poster.tex b/poster/WWW_poster/poster.tex new file mode 100644 index 0000000..eeee7b6 --- /dev/null +++ b/poster/WWW_poster/poster.tex @@ -0,0 +1,289 @@ +\documentclass[final]{beamer} +\usepackage[utf8]{inputenc} +\usepackage[scale=1.6]{beamerposter} % Use the beamerposter package for laying +\usetheme{confposter} % Use the confposter theme supplied with this template + +\usepackage{framed, amsmath, amsthm, amssymb} +\usepackage{color, bbm} +\setbeamercolor{block title}{fg=dblue,bg=white} % Colors of the block titles +\setbeamercolor{block body}{fg=black,bg=white} % Colors of the body of blocks +\setbeamercolor{block alerted title}{fg=white,bg=dblue!70} % Colors of the +\setbeamercolor{block alerted body}{fg=black,bg=dblue!10} % Colors of the body + +\newlength{\sepwid} +\newlength{\onecolwid} +\newlength{\twocolwid} +\newlength{\threecolwid} +\setlength{\paperwidth}{48in} % A0 width: 46.8in +\setlength{\paperheight}{40in} % A0 height: 33.1in +\setlength{\sepwid}{0.024\paperwidth} % Separation width (white space) between +\setlength{\onecolwid}{0.22\paperwidth} % Width of one column +\setlength{\twocolwid}{0.464\paperwidth} % Width of two columns +\setlength{\threecolwid}{0.708\paperwidth} % Width of three columns +\setlength{\topmargin}{-1in} % Reduce the top margin size +%----------------------------------------------------------- + +\usepackage{graphicx} +\usepackage{booktabs} + +%---------------------------------------------------------------------------------------- +% TITLE SECTION +%---------------------------------------------------------------------------------------- + +\title{Inferring Graphs from Cascades} % Poster title + +\author{Jean Pouget-Abadie, Thibaut Horel} % Author(s) + +\institute{Harvard University} % Institution(s) +%---------------------------------------------------------------------------------------- +\begin{document} +\addtobeamertemplate{block end}{}{\vspace*{2ex}} % White space under blocks +\addtobeamertemplate{block alerted end}{}{\vspace*{2ex}} % White space under + +\setlength{\belowcaptionskip}{2ex} % White space under figures +\setlength\belowdisplayshortskip{2ex} % White space under equations + +\begin{frame}[t] +\begin{columns}[t] +\begin{column}{\sepwid}\end{column} +\begin{column}{\onecolwid} % The first column + +%---------------------------------------------------------------------------------------- +% INTODUCTION +%---------------------------------------------------------------------------------------- + + +\vspace{- 12.2 cm} +\begin{center} +{\includegraphics[scale=2.5]{../images/SEASLogo_RGB.png}} +\end{center} + +\vspace{5 cm} + +\begin{block}{Problem Statement} + +\begin{itemize} + \item A {\bf diffusion process} describes the evolution of a behavior, which + is transmitted from node to node along the edges of a network. + \item If the network is {\bf unknown} and only the behaviors of nodes in time + is observed, for which diffusion processes can we recover the edges? In + how many measurements? +\end{itemize} + +{\bf Notation} +\begin{itemize} + \item $X^t_c \in {\{0,1\}}^n$ set of infected nodes at time $t$ in cascade $c$ + \item $p_{i,j}$: weight of directed edge $i\rightarrow j$ +\end{itemize} + +{\bf Objective} +\begin{itemize} + \item We observe $(c, t, X^t_c)$ + \item Find $\hat p$ such that $\|p - \hat p\|_2 \leq \epsilon$ +\end{itemize} + +\end{block} + +\begin{block}{Independent Cascade Model~\cite{Kempe:03}} + +\begin{figure} +\centering +\includegraphics[width=0.6\textwidth]{../images/voter.png} +\end{figure} + +\begin{itemize} + \item Probability that $j^{th}$ node gets infected: + \begin{framed} + \begin{align*} + \tag{IC} + \mathbb{P}\big[X^{t+1}_j = 1\,|\, X^{t}\big] + & = 1 - \prod_{i = 1}^m {(1 - p_{i,j})}^{X^t_i} \\ + & = 1 - \prod_{i = 1}^m e^{\Theta_{i,j}X^t_i} \\ + & = 1 - e^{\Theta_j \cdot X^t} + \end{align*} + \end{framed} + where $\Theta_{i,j} \equiv \log(1- p_{i,j})$ +\end{itemize} + +\end{block} + +\end{column} % End of the first column + +%----------------------------------------------------------------------------- +\begin{column}{\sepwid}\end{column} % Empty spacer column +%----------------------------------------------------------------------------- +\begin{column}{\onecolwid} % The first column + +\begin{block}{Voter Model} +\begin{figure} +\centering +\includegraphics[width=0.6\textwidth]{../images/icc.png} +\end{figure} + +\begin{itemize} + \item Probability that $j^{th}$ node gets infected: + \begin{framed} + \begin{equation*} + \tag{VT} + \mathbb{P}\big[X^{t+1}_j = 1\,|\, X^{t}\big] + = \sum_{i \in X^t} p_{i,j} = p_j \cdot X^t + \end{equation*} + \end{framed} +\end{itemize} + +\end{block} + + +\begin{block}{Reformulation} + +{\bf Generalized Linear Cascade Model} +\begin{itemize} + \item $f: \mathbb{R} \rightarrow [0,1]$: inverse link function + \item Probability depends on $f$-transform of scalar product: + \begin{framed} + $$\mathbb{P}(X^{t+1}_j = 1 | X^t) = f(\Theta_j \cdot X^t)$$ + \end{framed} +\end{itemize} + +{\bf Setup} +\begin{figure} + \centering + \includegraphics[scale=1.5]{../images/drawing.pdf} +\end{figure} + +{\bf Examples:} +\begin{itemize} + \item Independent Cascade (IC) Model: $f : z \mapsto 1-e^z$ + \item Voter model: $f : z \mapsto z$ + \item Discrete-version of continuous IC model~\cite{GomezRodriguez:2010} + \item Logistic cascades: $f: z\mapsto \frac{1}{1-e^z}$ +\end{itemize} + +\end{block} +\end{column} +%----------------------------------------------------------------------------- +\begin{column}{\sepwid}\end{column} +%----------------------------------------------------------------------------- + +\begin{column}{\onecolwid} + +\begin{block}{Sparse Recovery} + +\begin{itemize} + \item Solving for $A x = b$ when $A$ is non-degenerate is possible if + \begin{itemize} + \item $A$ is {\bf almost invertible} + \item $x$ is {\bf sparse} + \end{itemize} + \item If $x$ is solution to $\min L(x)$ where + $L$ is convex, then~\cite{Negahban:2009}~solve for: + \begin{equation*} + \min_x L(x) + \lambda \| x\| + \end{equation*} +\end{itemize} +\end{block} + +\begin{theorem} + {\bf Assumptions}: + \begin{itemize} + \item $f$ and $1-f$ are log-concave with log-gradient bounded by + $\frac{1}{\alpha}$ + \item $\nabla^2 {\cal L}$ verifies the $(S,\gamma)$-{\bf + RE} condition + \vspace{1cm} +\end{itemize} {\bf Algorithm}: + \begin{itemize} + \item Solve MLE program with $\lambda = 2\sqrt{\frac{\log m}{\alpha n}}$ + \begin{framed} + \begin{equation*} + \hat \theta_i \in \arg \max_{\theta} {\cal L}_i(\theta_i | x^1, + \dots x^n) - \lambda \|\theta_i\|_1 + \end{equation*} + \end{framed} + \end{itemize} + \vspace{1cm} + {\bf Guarantee} + With high probability: + \begin{framed} + \begin{equation*} + \|\hat \theta - \theta^*\|_2 \leq \frac{6}{\gamma} \sqrt{\frac{s \log + m}{\alpha n}} + \end{equation*} + \end{framed} + where $s$ is degree of node, $m$ is number of nodes, $n$ is the number of + observations +\end{theorem} + +\begin{block}{Restricted Eigenvalue Condition} + {\bf Definition} + \begin{itemize} + \item $C(S) \equiv \{ X :\|X_{\bar S}\|_1 \leq 3 \|X\|_1\}$ + \item Matrix $A$ verifies the $(\gamma, S)$-{(\bf RE)} condition if: + $$\forall X \in C({\cal S}), X^T A X \geq \gamma \|X\|_2^2$$ + \end{itemize} + + \vspace{1cm} + {\bf Hessian $\mapsto$ Gram Matrix} + \begin{itemize} + \item If $f$ and $1-f$ are $c$-strictly log-convex, we can replace the + condition on the $\nabla^2 {\cal L}$ by the same condition on the Gram + matrix $X^T X$. + \end{itemize} + \vspace{1cm} + {\bf Hessian $\mapsto$ Expected Hessian} + \begin{itemize} + \item If $\mathbb{E}[A]$ verifies the $(S, \gamma)$-{(\bf RE)} condition, + then $A$ verifies the $(S, \gamma/2)$-{(\bf RE)} + condition~\cite{vandegeer:2009} + \end{itemize} + +\end{block} + +\end{column} % End of the second column + +%----------------------------------------------------------------------------- +\begin{column}{\sepwid}\end{column} % Empty spacer column +%----------------------------------------------------------------------------- +\begin{column}{\onecolwid} % The third column + \begin{block}{Experimental validation} + \begin{figure} + \centering + \includegraphics[scale=1.2]{../images/watts_strogatz.pdf} + \caption{Watts-Strogatz, $300$ nodes, $4500$ edges, uniform edge weights, + constant $p_{init}$} + \end{figure} + \end{block} + + +\begin{block}{Conclusion} + \begin{itemize} + \item Introduce Generalized Linear Casacade model + \item Better finite sample guarantees~\cite{Netrapalli:2012, Abrahao:13, + Daneshmand:2014} + \item Interpretable conditions on Hessian + \item Lower bound+approximately sparse case developed in full + paper~\cite{Pouget:2015} + \end{itemize} +\end{block} + +%----------------------------------------------------------------------------- +% REFERENCES +%----------------------------------------------------------------------------- + +\begin{block}{References} + {\scriptsize + \bibliography{../../paper/sparse} +\bibliographystyle{plain}} +\end{block} + +%----------------------------------------------------------------------------- + +\end{column} % End of the third column + +\end{columns} % End of all the columns in the poster + +\end{frame} % End of the enclosing frame + + + +\end{document} |
