diff options
Diffstat (limited to 'simulation/mle_blocks.py')
| -rw-r--r-- | simulation/mle_blocks.py | 95 |
1 files changed, 95 insertions, 0 deletions
diff --git a/simulation/mle_blocks.py b/simulation/mle_blocks.py new file mode 100644 index 0000000..5acebab --- /dev/null +++ b/simulation/mle_blocks.py @@ -0,0 +1,95 @@ +import main as mn +import theano +from theano import tensor as tsr +import blocks +import blocks.algorithms, blocks.main_loop, blocks.extensions.monitoring +import theano.tensor.shared_randomstreams +import picklable_itertools +import numpy as np +from six.moves import range +import fuel +import fuel.datasets +import collections + + +class JeaninuScheme(fuel.schemes.ShuffledScheme): + def get_request_iterator(self): + indices = list(self.indices) + start = np.random.randint(self.batch_size) + batches = list(map( + list, + picklable_itertools.extras.partition_all(self.batch_size, + indices[start:]) + )) + if indices[:start]: + batches.append(indices[:start]) + batches = np.asarray(batches) + return iter(batches[np.random.permutation(len(batches))]) + + +def create_model(n_nodes): + x = tsr.matrix(name='x', dtype='int8') + s = tsr.matrix(name='s', dtype='int8') + params = theano.shared( + .5 + .01 * + np.random.normal(size=(n_nodes, n_nodes)).astype(theano.config.floatX), + name='params' + ) + y = tsr.maximum(tsr.dot(x, params), 1e-5) + infect = tsr.log(1. - tsr.exp(-y[0:-1])) + lkl_pos = tsr.sum(infect * (x[1:] & s[1:])) + lkl_neg = tsr.sum(-y[0:-1] * (~x[1:] & s[1:])) + lkl_mle = lkl_pos + lkl_neg + lkl_mle.name = 'cost' + return x, s, params, lkl_mle + + +def create_random_graph(n_nodes, p=.5): + graph = .5 * np.random.binomial(2, p=.5, size=(n_nodes, n_nodes)) + for k in range(len(graph)): + graph[k, k] = 0 + return np.log(1. / (1 - p * graph)) + + +def create_data_stream(n_cascades, graph, batch_size, shuffle=True): + """ + shuffle (bool): shuffle minibatches but not within minibatch + """ + cascades = mn.build_cascade_list(mn.simulate_cascades(n_cascades, graph), + collapse=True) + x_obs, s_obs = cascades[0], cascades[1] + data_set = fuel.datasets.base.IndexableDataset(collections.OrderedDict( + [('x', x_obs), ('s', s_obs)] + )) + if shuffle: + scheme = JeaninuScheme(len(x_obs), batch_size=batch_size) + else: + scheme = fuel.schemes.SequentialScheme(len(x_obs), + batch_size=batch_size) + return fuel.streams.DataStream(dataset=data_set, iteration_scheme=scheme) + + +if __name__ == "__main__": + n_cascades = 10000 + batch_size = 1000 + graph = np.array([[0, 0, 1], [0, 0, 0.5], [0, 0, 0]]) + graph = np.log(1. / (1 - .5 * graph)) + print('GRAPH:\n', graph, '\n-------------\n') + + x, s, params, cost = create_model(len(graph)) + + alg = blocks.algorithms.GradientDescent( + cost=-cost, parameters=[params], step_rule=blocks.algorithms.AdaDelta() + ) + data_stream = create_data_stream(n_cascades, graph, batch_size, + shuffle=True) + loop = blocks.main_loop.MainLoop( + alg, data_stream, + extensions=[ + blocks.extensions.FinishAfter(after_n_epochs = 1000), + blocks.extensions.monitoring.TrainingDataMonitoring([cost, params], + after_batch=True), + blocks.extensions.Printing() + ] + ) + loop.run() |
