diff options
Diffstat (limited to 'simulation/vi_beta.py')
| -rw-r--r-- | simulation/vi_beta.py | 114 |
1 files changed, 114 insertions, 0 deletions
diff --git a/simulation/vi_beta.py b/simulation/vi_beta.py new file mode 100644 index 0000000..e3bcbf6 --- /dev/null +++ b/simulation/vi_beta.py @@ -0,0 +1,114 @@ +import time +import main as mn +import numpy as np +import logging +import scipy.special as ssp +from itertools import product + +logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s', + level=logging.INFO) + +def g(m): + assert (m > 0).all() + return np.log(1 - np.exp(-m)) + + +def h(m): + return -m + + +def ll(x, s, theta): + """ + x : infected + s : susceptible + """ + res = 0 + for t in range(1, x.shape[0]): + w = np.dot(x[t-1], theta) + res += g(w)[x[t]].sum() + h(w)[~x[t] & s[t]].sum() + return res + + +def sample(params): + mu, v = params + size = mu.shape + return np.clip(np.random.beta(mu, v, size=size), 1e-3, 1e5) + + +def ll_full(params, x, s, nsamples=50): + return np.mean([ll(x, s, sample(params)) for _ in xrange(nsamples)]) + + +def kl(params1, params0): + mu0, sig0 = params0 + mu1, sig1 = params1 + return (ssp.betaln(mu0, sig0) - ssp.betaln(mu1, sig1) + (mu0 - mu1) * + ssp.psi(mu0) + (sig0 - sig1) * ssp.psi(sig0) + (mu1 - mu0 + sig1 - + sig0) * ssp.psi(mu0 + sig0)).sum() + + +def aux(var, res, i, j, f, eps): + var[i,j] += eps + res[i,j] += f(var) + var[i,j] -= 2 * eps + res[i,j] -= f(var) + res[i,j] /= 2 * eps + var[i, j] += eps + + +def grad_ll_full(params, x, s, nsamples=50, eps=1e-5): + mu, v = params + n, m = mu.shape + mugrad = np.empty((n,m)) + vgrad = np.empty((n,m)) + for (i, j) in product(xrange(n), xrange(m)): + aux(mu, mugrad, i, j, lambda t: ll_full((t, v), x, s, nsamples), eps) + aux(v, vgrad, i, j, lambda t: ll_full((mu, t), x, s, nsamples), eps) + + return mugrad, vgrad + + +def grad_kl(params1, params0, eps=1e-5): + mu0, sig0 = params0 + mu1, sig1 = params1 + + n, m = mu0.shape + mugrad = np.empty((n,m)) + vgrad = np.empty((n,m)) + for (i, j) in product(xrange(n), xrange(m)): + aux(mu1, mugrad, i, j, lambda t: kl((t, sig1), params0), eps) + aux(sig1, vgrad, i, j, lambda t: kl((mu1, t), params0), eps) + + return mugrad, vgrad + + +def sgd(mu1, sig1, mu0, sig0, cascades, n_e=100, lr=lambda t: 1e-1, n_print=10): + g_mu1, g_sig1 = grad_kl((mu1, sig1), (mu0, sig0)) + for t in xrange(n_e): + lrt = lr(t) # learning rate + mu1 = np.clip(mu1 + lrt * g_mu1, 1e-3, 1e5) + sig1 = np.clip(sig1 + lrt * g_sig1, 1e-3, 1e5) + for step, (x, s) in enumerate(zip(*cascades)): + g_mu1, g_sig1 = grad_ll_full((mu1, sig1), x, s) + mu1 = np.clip(mu1 + lrt * g_mu1, 1e-3, 1e5) + sig1 = np.clip(sig1 + lrt * g_sig1, 1e-3, 1e5) + res = np.sum(ll_full((mu1, sig1), x, s) for x, s in zip(*cascades))\ + + kl((mu1, sig1), (mu0, sig0)) + #if step % n_print == 0: + logging.info("Epoch:{}\tStep:{}\tLB:{}\t".format(t, step, res)) + print mu1 + print sig1 + + +if __name__ == '__main__': + graph = np.array([[0, 0, 1], [0, 0, 0.5], [0, 0, 0]]) + #graph = np.random.binomial(2, p=.2, size=(4, 4)) + p = 0.5 + graph = np.log(1. / (1 - p * graph)) + print(graph) + cascades = mn.build_cascade_list(mn.simulate_cascades(100, graph)) + mu0, sig0 = (1. + .2 * np.random.normal(size=graph.shape), + 1 + .2 * np.random.normal(size=graph.shape)) + mu1, sig1 = (1. + .2 * np.random.normal(size=graph.shape), + 1 + .2 * np.random.normal(size=graph.shape)) + sgd(mu1, sig1, mu0, sig0, cascades, n_e=30, n_print=1) |
