aboutsummaryrefslogtreecommitdiffstats
path: root/src/make_plots.py
diff options
context:
space:
mode:
Diffstat (limited to 'src/make_plots.py')
-rw-r--r--src/make_plots.py67
1 files changed, 67 insertions, 0 deletions
diff --git a/src/make_plots.py b/src/make_plots.py
new file mode 100644
index 0000000..9b1fdf4
--- /dev/null
+++ b/src/make_plots.py
@@ -0,0 +1,67 @@
+import matplotlib.pyplot as plt
+import numpy as np
+import cascade_creation
+import convex_optimization
+import algorithms
+import rip_condition
+
+
+def plot_rip_numberofnodes(max_proba, n_min, n_max, p_init, n_cascades, K_max):
+ """
+ Plots the RIP constant for varying number of nodes (n_max included)
+ """
+ x = np.arange(n_min, n_max+1)
+ y = []
+
+ for n_nodes in x:
+ print n_nodes
+ G = cascade_creation.InfluenceGraph(max_proba=.3)
+ G.erdos_init(n=n_nodes, p=.1) #TODO: handle different inits!
+ cascades = cascade_creation.generate_cascades(G, p_init=p_init,
+ n_cascades=n_cascades)
+ M, __ = cascade_creation.icc_matrixvector_for_node(cascades, None)
+ M = cascade_creation.normalize_matrix(M)
+ y.append(rip_condition.find_kth_rip_constants(M, 4)) #
+
+ print y
+
+ plt.clf()
+ plt.plot(x, y)
+ #plt.show()
+
+ return x, y
+
+
+def compare_greedy_and_lagrange_cs284r():
+ """
+ Compares the performance of the greedy algorithm on the
+ lagrangian sparse recovery objective on the Facebook dataset
+ for the CS284r project
+ """
+ G = cascade_creation.InfluenceGraph(max_proba = .8)
+ G.import_from_file("subset_facebook_SNAP.txt")
+ A = cascade_creation.generate_cascades(G, p_init=.05, n_cascades=100)
+
+ #Greedy
+ G_hat = algorithms.greedy_prediction(G, A)
+ algorithms.correctness_measure(G, G_hat, print_values=True)
+
+ #Lagrange Objective
+ G_hat = algorithms.recovery_l1obj_l2constraint(G, A,
+ passed_function=convex_optimization.l1obj_l2penalization,
+ floor_cstt=.1, lbda=10)
+ algorithms.correctness_measure(G, G_hat, print_values=True)
+
+
+def test():
+ """
+ unit test
+ """
+ if 0:
+ plot_rip_numberofnodes(max_proba=.3, n_min=30, n_max=30,
+ p_init=.01, n_cascades=100, K_max=4)
+ if 1:
+ compare_greedy_and_lagrange_cs284r()
+
+if __name__=="__main__":
+ test()