aboutsummaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/make_plots.py40
1 files changed, 35 insertions, 5 deletions
diff --git a/src/make_plots.py b/src/make_plots.py
index 840cc94..c5a50f6 100644
--- a/src/make_plots.py
+++ b/src/make_plots.py
@@ -28,7 +28,7 @@ def compare_greedy_and_lagrange_cs284r():
def compute_graph(graph_name, n_cascades, lbda, passed_function, min_proba,
- max_proba, sparse_edges=False):
+ max_proba, sparse_edges=False, p_init=.05):
"""
Test running time on different algorithms
"""
@@ -36,7 +36,7 @@ def compute_graph(graph_name, n_cascades, lbda, passed_function, min_proba,
min_proba=min_proba,
sparse_edges=sparse_edges)
G.import_from_file(graph_name)
- A = cascade_creation.generate_cascades(G, p_init=.05, n_cascades=n_cascades)
+ A = cascade_creation.generate_cascades(G, p_init=p_init, n_cascades=n_cascades)
if passed_function==algorithms.greedy_prediction:
G_hat = algorithms.greedy_prediction(G, A)
@@ -184,6 +184,7 @@ def plot_ROC_curve(figure_name):
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.grid(color="lightgrey")
+
ax.plot(recall_lasso_200, precision_lasso_200, 'ko-',
color="lightseagreen", label="Lasso-200 cascades")
ax.plot(recall_sparse_200, precision_sparse_200, 'ko-',
@@ -196,14 +197,43 @@ def plot_ROC_curve(figure_name):
plt.savefig("../paper/figures/"+"ROC_curve.pdf")
+def plot_kronecker_l2norm_nonsparse():
+ plt.clf()
+ fig = plt.figure(1)
+ x = [.01, .05, .1, .15, .2]
+ greedy = [.43, .29, .18, .1, .08]
+ sparse_recov = [.7, .58, .48, .39, .31]
+ max_likel = [.69, .56, .45, .37, .3]
+ lasso = [.66, .55, .46, .38, .3]
+
+ fig, ax = plt.subplots()
+
+ #plt.subplots_adjust(bottom=.2, top=.85)
+ #plt.xticks(ha="right", rotation=45)
+
+ #plt.axis((50, 2000, 0, 145))
+ plt.xlabel("Number of Cascades")
+ plt.ylabel("l2-norm")
+ plt.grid(color="lightgrey")
+ ax.plot(x, greedy, 'ko-', color="lightseagreen", label='Greedy')
+ ax.plot(x, lasso, 'ko-', color="orange", label="Lasso")
+ ax.plot(x, max_likel, 'ko-', color="cornflowerblue", label="MLE")
+ ax.plot(x, sparse_recov, 'ko-', color="k", label="Our Method")
+ plt.legend(loc="upper right")
+ ax.set_xticks(x)
+ ax.set_xticklabels(tuple(x))
+ plt.savefig("../paper/figures/"+"watts_strogatz_p_init.pdf")
+
+
+
if __name__=="__main__":
if 1:
compute_graph("../datasets/watts_strogatz_300_30_point3.txt",
- n_cascades=300, lbda=.01, min_proba=.2, max_proba=.7,
+ n_cascades=300, lbda=.013382, min_proba=.2, max_proba=.7,
passed_function=
#convex_optimization.sparse_recovery)
- #algorithms.greedy_prediction)
- convex_optimization.sparse_recovery, p_init=.15)
+ algorithms.greedy_prediction, p_init=.2)
+ #convex_optimization.sparse_recovery, p_init=.15)
if 0:
compute_graph("../datasets/powerlaw_200_30_point3.txt",
n_cascades=200, lbda=.01, min_proba=.2, max_proba=.7,