1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
import numpy as np
import networkx as nx
import cascade_creation
from collections import Counter
from itertools import izip
import convex_optimization
import timeout
def greedy_prediction(G, cascades):
"""
Returns estimated graph from Greedy algorithm in "Learning Epidemic ..."
"""
#TODO: This function is deprecated!
G_hat = cascade_creation.InfluenceGraph(max_proba=None)
G_hat.add_nodes_from(G.nodes())
for node in G_hat.nodes():
unaccounted = np.ones(len(cascades), dtype=bool)
for t, cascade in izip(xrange(len(cascades)), cascades):
if not cascade.infection_time(node) or \
cascade.infection_time(node)[0] == 0:
unaccounted[t] = False
while unaccounted.any():
tmp = [cascade for boolean, cascade in izip(unaccounted,
cascades) if boolean]
parents = Counter()
for cascade in tmp:
parents += cascade.candidate_infectors(node)
parent = parents.most_common(1)[0][0]
G_hat.add_edge(parent, node)
for t, cascade in izip(xrange(len(cascades)), cascades):
if (cascade.infection_time(parent) == \
[item - 1 for item in cascade.infection_time(node)]):
unaccounted[t] = False
return G_hat
def recovery_l1obj_l2constraint(G, cascades, floor_cstt, passed_function,
*args, **kwargs):
"""
Returns estimated graph from convex program specified by passed_function
passed_function should have similar structure to ones in convex_optimation
"""
G_hat = cascade_creation.InfluenceGraph(max_proba=None)
G_hat.add_nodes_from(G.nodes())
for node in G_hat.nodes():
print node
try:
M, w = cascade_creation.icc_matrixvector_for_node(cascades, node)
p_node, __ = passed_function(M,w, *args, **kwargs)
G_hat = cascade_creation.add_edges_from_proba_vector(G=G_hat,
p_node=p_node, node=node, floor_cstt=floor_cstt)
except timeout.TimeoutError:
print "TimeoutError, skipping to next node"
return G_hat
def correctness_measure(G, G_hat, print_values=False):
"""
Measures correctness of estimated graph G_hat to ground truth G
"""
edges = set(G.edges())
edges_hat = set(G_hat.edges())
fp = edges_hat - edges
fn = edges - edges_hat
gp = edges | edges_hat
if print_values:
print "False Positives: {}".format(len(fp))
print "False Negatives: {}".format(len(fn))
print "Good Positives: {}".format(len(gp))
return fp, fn, gp
def test():
"""
unit test
"""
G = cascade_creation.InfluenceGraph(max_proba = .8)
G.erdos_init(n = 100, p = .3)
import time
t0 = time.time()
A = cascade_creation.generate_cascades(G, .2, 10000)
G_hat = recovery_l1obj_l2constraint(G, A,
passed_function=convex_optimization.l1obj_l2penalization,
floor_cstt=.1, lbda=100)
correctness_measure(G, G_hat, print_values=True)
if __name__=="__main__":
test()
|