aboutsummaryrefslogtreecommitdiffstats
path: root/notes/presentation/beamer_2.tex
blob: fda5b8d70f179f3f8b42bfd1579d96daee6effd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
\documentclass[10pt]{beamer}

\usepackage{amssymb, amsmath, graphicx, amsfonts, color, amsthm}

\newtheorem{proposition}{Proposition}

\title{Learning from Diffusion processes}
\subtitle{What cascades really teach us about networks}
\author{Jean (John) Pouget-Abadie \\ Joint Work with Thibaut (T-bo) Horel}

\begin{document}

\begin{frame}
\titlepage
\end{frame}

\begin{frame}
\frametitle{Introduction}

%notes: Learn what? the network, the parameters of the diffusion process.

\begin{table}
\centering
\begin{tabular}{c | c}
Network & Diffusion process \\[1ex]
\hline
\\
Airports & Infectious diseases (SARS) \\
 & Delays (Eyjafjallajökull) \\[3ex]
Social Network & Infectious diseases (flu) \\
 & Behaviors (Ice Bucket Challenge) \\[3ex]
Internet/WWW & Information diffusion (Memes, Pirated content \dots)
\end{tabular}
\end{table}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}
\frametitle{Introduction}

What do we know? What do we want to know?

\begin{itemize}
\item We know the {\bf airport network} structure. We observe delays. Can we learn how delays propagate?
\item  We (sometimes) know the {\bf social network}. We observe behaviors. Can we learn who influences whom?
\item Rarely know {\bf blog network}. We observe discussions. Can we learn who learns from whom?
\end{itemize}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}
\frametitle{Independent Cascade Model}

\begin{figure}
\includegraphics[scale=.5]{figures/weighted_graph.png}
\caption{Weighted, directed graph}
\end{figure}

\begin{itemize}
\item Three states: susceptible, {\color{blue} infected}, {\color{red} dead}
\item Each {\color{blue} infected} node $i$ has a probability $p_{i,j}$ of infecting each of his neighbors $j$.
\item A node stays {\color{blue}  infected} for one round, then it {\color{red} dies}
\item At $t=0$, each node is {\color{blue} infected} with probability $p_{\text{init}}$
\end{itemize}

%Notes: Revisit the celebrated independent cascade model -> Influence maximisation is tractable, requires knowledge of weights

\end{frame}


%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}
\frametitle{Independent Cascade Model}

\begin{figure}
\includegraphics[scale=.5]{figures/weighted_graph.png}
\caption{Weighted, directed graph}
\end{figure}

\begin{itemize}
\item If $3$ and $4$ are {\color{blue} infected} at $t$, what is the probability that node $0$ is infected at $t+1$?
$$1 - \mathbb{P}(\text{not infected}) = 1 - (1 - .45)(1-.04)$$
\item In general, $X_t$ {\color{blue} infected} nodes at t:
$$\mathbb{P}(j \text{ becomes infected at t+1}|X_{t}) = 1 - \prod_{i \in {\cal N}(j) \cap X_{t}} (1 - p_{i,j})$$
\end{itemize}


\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}
\frametitle{Independent Cascade Model}
\begin{proposition}
The ICC, conditioned on previous time step, can be cast as a {\bf generalized linear model}
$$\mathbb{P}(j \in X_{t+1} | X_t) = f(X_t \cdot \theta_j)$$
\end{proposition}

\begin{proof}
\begin{align}
\mathbb{P}(j\in X_{t+1}|X_{t}) & = 1 - \prod_{i \in {\cal N}(j) \cap X_{t}} (1 - p_{i,j}) \\
& = 1 - \exp \left[ \sum_{i \in {\cal N}(j) \cap X_{t}} \log(1 - p_{i,j}) \right] \\
& = 1 - \exp \left[ X_{t} \cdot \theta_{j}\right]
\end{align}
\end{proof}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}
\frametitle{Independent Cascade Model}
\begin{block}{Decomposability}
\begin{itemize}
\item Conditioned on $X_t$, the state of each node is sampled independently
\item We can focus on learning vector $\theta_{j}$ for each node
\end{itemize}
\end{block}

\begin{block}{Sparsity}
\begin{itemize}
\item $\theta_{i,j} = 0 \Leftrightarrow p_{i,j} = 0$
\item If graph is ``sparse'', then $\theta_j$ is sparse.
\end{itemize}
\end{block}
\end{frame}



%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}
\frametitle{Sparse Recovery}
\begin{figure}
\includegraphics[scale=.6]{../images/sparse_recovery_illustration.pdf}
\caption{$f(X_t\cdot \theta) = \mathbb{P}(j \in X_{t+1}| X_t)$}
\end{figure}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}
\frametitle{Learning from Diffusion Processes}
\begin{block}{Problem Statement}
\begin{itemize}
\item We are given a graph ${\cal G}$, and a diffusion process parameterized by $\left((\theta_{i,j})_{i,j}, f, p_{\text{init}}\right)$. 
\item Suppose we {\bf only} observe $(X_t)$ from the diffusion process.
\item Under what conditions can we learn $\theta_{i,j}$ for all $(i,j)$? How many $(X_t)$ are necessary?
\end{itemize}
\end{block}
\end{frame}

%%%%%%%%%%%%%%%%%%%%%

\begin{frame}
\frametitle{Learning from Diffusion Processes}

\begin{figure}
\includegraphics[scale=.4]{../images/sparse_recovery_illustration.pdf}
\caption{Generalized Linear Model for node $i$}
\end{figure}

\begin{block}{Likelihood Function}
$${\cal L}(\theta| X_1, \dots X_N) = \frac{1}{{\cal T}_i}  \sum_{t \in {\cal T}_i} x^{t+1}_i \log f(\theta_i \cdot x^t) + (1 - x^{t+1}_i) \log(1 - f(\theta_i \cdot x^t))$$
\end{block}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%

\begin{frame}
\frametitle{Conditions}
\begin{block}{On $f$}
\begin{itemize}
\item $\log f$ and $\log (1-f)$ have to be concave
\item $\log f$ and $\log (1-f)$ have bounded gradient
\end{itemize}
\end{block}

\begin{block}{On $(X_t)$}
\begin{itemize}
\item Want ${\cal H}$ be the hessian of ${\cal L}$ with respect to $\theta$ to be ``inversible''
\item $ n < dim(\theta) \implies {\cal H}$ is degenerate.
\item {\bf Restricted Eigenvalue condition} = ``almost invertible'' on sparse vectors. 
\end{itemize}
\end{block}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}
\frametitle{Restricted Eigenvalue Condition}

\begin{definition}
Let $S$ be the set of parents of node $i$.
$${\cal C} := \{ \Delta : \|\Delta\|_2 = 1, \|\Delta_{\bar S}\| \leq 3 \| \Delta_S\|_1 \}$$
${\cal H}$ verifies the $(S, \gamma)$-RE condition if:
$$\forall X \in {\cal C}, \Delta {\cal H} \Delta \geq \gamma$$
\end{definition}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}
\frametitle{Main Result}
Adapting a result from \cite{Negahban:2009}, we have the following theorem:

\begin{theorem}
Assume 
\begin{itemize}
\item the Hessian verifies the $(S,\gamma)$-RE condition
\item $|(\log f)'| < \frac{1}{\alpha}$ and $|(\log 1- f)'| < \frac{1}{\alpha}$ 
\end{itemize} then with high probability:
$$\| \theta^*_i - \hat \theta_i \|_2 \leq \frac{6}{\gamma}\sqrt{\frac{s\log m}{\alpha n}}$$
\end{theorem}

\begin{corollary}
By thresholding $\hat \theta_i$, if $n > C' s \log m$, we recover the support of $\theta^*$ and therefore the edges of ${\cal G}$
\end{corollary}

\end{frame}

%%%%%%%%%%%%%%%%%%%%%%%%

\begin{frame}
Comments: Correlated Measurements
TODO: still need to mention somewhere that we are doing penalized log likelihood
condition on $X_t$ is not great, we would like to have condition on the parameters $\theta, p_{\text{init}}$ $->$ Slides about expected hessian
TODO: slide about matrice de gram!
\end{frame}

\bibliography{../../paper/sparse}
\bibliographystyle{apalike}

\end{document}