blob: d86c54e794dcd6731de44ec450b8148480474001 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
\begin{itemize}
\item Small introduction about problem
\item What is a cascade?
\item What is our objective?
\item Motivation for the problem.
\item Summary of our approach
\end{itemize}
Parameters of the model:
\begin{itemize}
\item $p_{init}$ : multi-source: explain why more reasonable
\item $p_{min}$
\item $p_i <$ 1- epsilon?
\end{itemize}
\subsection{Related Work}
\subsection{Past work}
\begin{itemize}
\item Gomez
\item Netrapalli: $d^2 $log n + correlation decay + very bad dependence on
\item Kleinberg/Abrahao: $d^9$ log n: single source model...
\item Gomez: $d^3$ log n + assumptions on Hessian of diffusion process: upper and lower bound on eigenvalues + same proof concept as Netrapalli
\end{itemize}
\subsection{Our contribution}
\begin{itemize}
\item Better assumptions: easy to understand, verify?, and much less restrictive
\item Oracle inequality rather than support recovery -> First one
\item Algorithm for recovery in Omega(d log n) -> First one
\item Practical Confidence Intervals
\item Practical Lower bound
\item Compare on generic networks
\end{itemize}
To justify:
\begin{itemize}
\item why discrete isn't so bad;
\item why Gomez's assumptions are not reasonable;
\end{itemize}
|