1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
|
\documentclass[10pt]{beamer}
\usepackage{amssymb, amsmath, graphicx, amsfonts, color, amsthm, wasysym, framed}
\newtheorem{proposition}{Proposition}
\title{Learning from Diffusion processes}
\subtitle{What cascades really teach us about networks}
\author{Jean Pouget-Abadie, Thibaut Horel}
\institute[]{\includegraphics[scale=.35]{figures/SEASLogo_RGB.png}}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Introduction}
\begin{itemize}
\item If we observe who catches the flu and when over several years, can we guess {\bf who is friends with whom?}
\item If we observe behaviors spreading on Facebook (\emph{Ice bucket challenge, Je suis Charlie}), can we know {\bf who is most likely to influence you?}
\item If we observe memes/ideas on internet, can we tell {\bf which blogs/commmunities take their information from which source?}
\end{itemize}
\end{frame}
%% Intuition says yes --> this problem can be formalized and is known as the
%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Introduction}
\begin{definition}{{\bf Network Inference Problem} {\small \cite{GomezRodriguez:2010}} }
If \emph{only} the diffusion process is observed, but the network is \emph{unknown}:
\begin{itemize}
\item Can we learn the network?
\item For which types of diffusion process?
\item After how many observations?
\end{itemize}
\end{definition}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Prior work}
\begin{itemize}
\item {\small \cite{GomezRodriguez:2010, gomezbalduzzi:2011, Abrahao:13, Daneshmand:2014}} : Continuous-time Independent Cascade-like diffusion model
\item {\small \cite{Netrapalli:2012}}: Discrete-time Independent Cascade Model (formalized in {\small \cite{Kempe:03}}) with correlation decay
\item {\small \cite{?}}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Discrete-time Independent Cascade Model}
\begin{figure}
\includegraphics[scale=.3]{figures/ic_illustration.pdf}
\caption{Weighted, directed graph}
\end{figure}
\begin{itemize}
\item At $t=0$, each node is {\color{blue} infected} with probability $p_{\text{init}}$ and {\bf susceptible} with probability $1-p_{\text{init}}$
\item Each {\color{blue} infected} node $i$ has a ``one-shot'' probability $p_{i,j}$ of infecting each of its susceptible neighbors $j$ at $t+1$.
\item A node stays {\color{blue} infected} for one round, then it {\color{red} dies}
\item Process continues until random time $T$ when no more {\bf susceptible} nodes are left
\end{itemize}
%Notes: Revisit the celebrated independent cascade model -> Influence maximisation is tractable, requires knowledge of weights
\end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Discrete-time Independent Cascade Model}
% \begin{figure}
% \includegraphics[scale=.5]{figures/weighted_graph.png}
% \caption{Weighted, directed graph}
% \end{figure}
% \begin{block}{Example}
% \begin{itemize}
% \item At $t=0$, the {\color{orange} orange} node is infected, and the two other nodes are susceptible. $X_0 = $\{{\color{orange} orange}\}
% \item At $t=1$, the {\color{orange}} node infects the {\color{blue} blue} node and fails to infect the {\color{green} green} node. The {\color{orange} orange} node dies. $X_1 = $\{{\color{blue} blue}\}
% \item At $t=2$, {\color{blue} blue} dies. $X_2 = \emptyset$
% \end{itemize}
% \end{block}
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Discrete-time Independent Cascade Model}
\begin{figure}
\includegraphics[scale=.5]{figures/weighted_graph.png}
\caption{Weighted, directed graph}
\end{figure}
\begin{itemize}
\item If the {\color{orange} orange} node and the {\color{green} green} node are infected at $t=0$, what is the probability that the {\color{blue} blue} node is infected at $t=1$?
$$1 - \mathbb{P}(\text{not infected}) = 1 - (1 - .72)(1-.04)$$
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Independent Cascade Model}
% \begin{figure}
% \includegraphics[scale=.5]{figures/weighted_graph.png}
% \caption{Weighted, directed graph}
% \end{figure}
% \begin{itemize}
% \item In general, for each susceptible node $j$:
% $$\mathbb{P}(j \text{ becomes infected at t+1}|X_{t}) = 1 - \prod_{i \in {\cal N}(j) \cap X_{t}} (1 - p_{i,j})$$
% \end{itemize}
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Independent Cascade Model}
\begin{itemize}
\item $X^t$: set of {\color{red} infected} nodes
\item Probability that node $j$ gets infected at $t+1$:
\begin{framed}
\begin{align*}
\tag{IC}
\mathbb{P}\big[X^{t+1}_j = 1\,|\, X^{t}\big]
& = 1 - \prod_{i = 1}^m {(1 - p_{i,j})}^{X^t_i} \\
& = 1 - \prod_{i = 1}^m e^{\Theta_{i,j}X^t_i} \\
& = 1 - e^{\Theta_j \cdot X^t}
\end{align*}
\end{framed}
% \item $f: z \mapsto 1 - e^z$
% \item $(j \in X_{t+1} | X_t) \sim {\cal B} \big(f(X_t \cdot \theta_j) \big)$
\item $\Theta_{i,j} \equiv \log(1-p_{i,j})$
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Voter Model}
\begin{figure}
\includegraphics[scale=.3]{figures/vt_illustration.pdf}
\end{figure}
\begin{itemize}
\item Probability that node $j$ is infected at $t+1$:
\begin{equation*}
\tag{VT}
\mathbb{P}\big[X^{t+1}_j = 1\,|\, X^{t}\big]
= \sum_{i \in X^t} p_{i,j} = p_j \cdot X^t
\end{equation*}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Generalized Linear Cascades}
{\bf Generalized Linear Cascade Model}
\begin{itemize}
\item $f: \mathbb{R} \rightarrow [0,1]$: inverse link function
\item Probability depends on $f$-transform of {\bf scalar product}:
\begin{framed}
$$\mathbb{P}(X^{t+1}_j = 1 | X^t) = f(\Theta_j \cdot X^t)$$
\end{framed}
\item {\bf Decomposable} node by node conditionally on infected nodes
\item Examples:
\begin{itemize}
\item IC model : $f: z \mapsto 1- e^z$
\item VT model : $f: z \mapsto z$
\item Discretized version of continuous diffusion model $f: z \mapsto 1-e^{-z}$
\end{itemize}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Setup}
\begin{figure}
\centering
\includegraphics[scale=.6]{../images/drawing.pdf}
\caption{$\mathbb{P}(j \in X_{t+1}| X_t) = f(X_t\cdot \theta)$}
\end{figure}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Sparse Recovery}
\begin{itemize}
\item Solving for $Ax = b$ when $A$ is non-degenerate is possible if:
\begin{itemize}
\item A is {\bf almost invertible}
\item x is {\bf sparse}
\end{itemize}
\item If $x$ is solution to $\min L(x)$ where $L$ is convex, then {\small \cite{Negahban:2009}} solving for:
\begin{framed}
\begin{equation*}
\min_x L(x) + \lambda \| x \|
\end{equation*}
\end{framed}
gives finite-sample guarantees under certain assumptions.
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Result}
{\bf Assumptions}
\begin{itemize}
\item $f$ and $1-f$ are $(1)$ log-concave and have $(2)$ log-gradient bounded by $\frac{1}{\alpha}$
\item $\nabla^2{\cal L}$ verifies the $(S, \gamma)-({\bf RE})$ condition
\end{itemize}
\vspace{1cm}
{\bf Algorithm}
\begin{itemize}
\item Solve $MLE$ program with $\lambda = 2 \sqrt{\frac{\log m}{\alpha n}}$:
\begin{framed}
\begin{equation*}
\hat \theta_i \in \arg \max_{\theta} {\cal L}_i(\theta_i | x^1,
\dots x^n) - \lambda \|\hat \theta_i\|_1
\end{equation*}
\end{framed}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Theorem}
If previous assumptions are met, with high probability,
\begin{framed}
\begin{equation*}
\|\hat \theta - \theta^*\|_2 \leq \frac{6}{\gamma} \sqrt{\frac{s \log
m}{\alpha n}}
\end{equation*}
\end{framed}
where
\begin{itemize}
\item $s$ is degree of node,
\item $m$ is number of nodes,
\item $n$ is the number of observations,
\item $\alpha$ is the gradient bound,
\item $\gamma$ is the $({\bf RE})$-constant
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Restricted Eigenvalue Condition}
\begin{block}{Almost sparse vectors}
\begin{itemize}
\item ${\cal C} := \{ X : \|X\|_2 = 1, \|X_{\bar S}\|_1 \leq 3 \| X_S\|_1 \}$
\end{itemize}
\end{block}
\begin{definition}
$A$ verifies the $(S, \gamma)$-({\bf RE}) condition \cite{bickel2009simultaneous} if:
$$\forall X \in {\cal C}, X^T A X \geq \gamma$$
\end{definition}
\begin{block}{Properties}
\begin{itemize}
\item If $\mathbb{E}[A]$ verifies the $(S, \gamma)$-{(\bf RE)} condition,
then $A$ verifies the $(S, \gamma/2)$-{(\bf RE)}
condition~{\small \cite{vandegeer:2009}}
\end{itemize}
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Restricted Eigenvalue Condition}
\begin{itemize}
\item If $f$ and $1-f$ are $c$-strictly log-concave, then if the {\bf Gram matrix} verifies the $\gamma$-({\bf RE})-condition, then the Hessian verifies the $c\gamma$-({\bf RE})-condition.
\end{itemize}
\begin{align*}
\mathbb{E}[X^T X] = \left( \begin{array}{ccc} a_1 & b_{1, 2} & b_{1, m} \\
\dots & \dots & \dots \\
b_{1, m} & \dots & a_m \end{array}\right)
\end{align*}
where
\begin{itemize}
\item $a_i \equiv$ ``average time node $i$ is infected''
\item $b_{i,j} \equiv$ ``average time node $i$ and node $j$ are infected \emph{together}''
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Conclusion}
\begin{itemize}
\item Introduced Generalized Linear Cascades
\item Better finite sample guarantees
\item Interpretable conditions
\item Lower bound+approx. sparse case developped in full paper~\cite{Pouget:2015}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Independent Cascade Model}
% For each susceptible node $j$, the event that it becomes {\color{blue} infected} conditioned on previous time step is a Bernoulli variable:
% $$(j \in X_{t+1} | X_t) \sim {\cal B} \big(f(X_t \cdot \theta_j) \big)$$
% \begin{itemize}
% \item $\theta_{i,j} := \log(1 - p_{i,j})$
% \item $\theta_j := (0, 0, 0, \theta_{4,j}, 0 \dots, \theta_{k,j}, \dots)$
% \item $f : x \mapsto 1 - e^x$
% \begin{align*}
% \mathbb{P}(j\in X_{t+1}|X_{t}) & = 1 - \prod_{i \in {\cal N}(j) \cap X_{t}} (1 - p_{i,j}) \\
% & = 1 - \exp \left[ \sum_{i \in {\cal N}(j) \cap X_{t}} \log(1 - p_{i,j}) \right] \\
% & = 1 - \exp \left[ X_{t} \cdot \theta_{j}\right]
% \end{align*}
% \end{itemize}
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Independent Cascade Model}
% For each susceptible node $j$, the event that it becomes {\color{blue} infected} conditioned on previous time step is a Bernoulli variable:
% $$(j \in X_{t+1} | X_t) \sim {\cal B} \big(f(X_t \cdot \theta_j) \big)$$
% \begin{block}{Decomposability}
% \begin{itemize}
% \item Conditioned on $X_t$, the state of the nodes at the next time step are mutually independent
% \item We can learn the parents of each node independently
% \end{itemize}
% \end{block}
% \begin{block}{Sparsity}
% \begin{itemize}
% \item $\theta_{i,j} = 0 \Leftrightarrow \log(1 - p_{i,j}) = 0 \Leftrightarrow p_{i,j} = 0$
% \item If graph is ``sparse'', then $p_{j}$ is sparse, then $\theta_j$ is sparse.
% \end{itemize}
% \end{block}
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Learning from Diffusion Processes}
% \begin{block}{Problem Statement}
% \begin{itemize}
% \item We are given a graph ${\cal G}$, and a diffusion process $f$ parameterized by $\left((\theta_j)_j, p_{\text{init}}\right)$.
% \item Suppose we {\bf only} observe $(X_t)$ from the diffusion process.
% \item Under what conditions can we learn $\theta_{i,j}$ for all $(i,j)$?
% \end{itemize}
% \end{block}
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Sparse Recovery}
% \begin{figure}
% \centering
% \includegraphics[scale=.6]{../images/drawing.pdf}
% \caption{$\mathbb{P}(j \in X_{t+1}| X_t) = f(X_t\cdot \theta)$}
% \end{figure}
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Learning from Diffusion Processes}
% % \begin{figure}
% % \includegraphics[scale=.4]{../images/sparse_recovery_illustration.pdf}
% % \caption{Generalized Cascade Model for node $i$}
% % \end{figure}
% \begin{block}{Likelihood Function}
% \begin{align*}
% {\cal L}(\theta_1, \dots, \theta_m| X_1, \dots X_n) = \sum_{i=1}^m \sum_{t} & X_{t+1}^i \log f(\theta_i \cdot X_t) + \\
% & (1 - X_{t+1}^i) \log(1 - f(\theta_i \cdot X_t))
% \end{align*}
% \end{block}
% \begin{block}{Penalized log-likelihood}
% For each node $i$, $$\theta_i \in \arg \max \frac{1}{n_i}{\cal {L}}_i(\theta_i | X_1, X_2, \dots, X_{n_i}) - \lambda \|\theta_i\|_1$$
% \end{block}
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Conditions}
% \begin{block}{On $f$}
% \begin{itemize}
% \item $\log f$ and $\log (1-f)$ have to be concave
% \item $\log f$ and $\log (1-f)$ have to have bounded gradient
% \end{itemize}
% \end{block}
% \begin{block}{On $(X_t)$}
% \begin{itemize}
% \item Want ${\cal H}$, the hessian of ${\cal L}$ with respect to $\theta$, to be well-conditioned.
% \item $ n < dim(\theta) \implies {\cal H}$ is degenerate.
% \item {\bf Restricted Eigenvalue condition} = invertible on ``almost sparse'' vectors.
% \end{itemize}
% \end{block}
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%
% %%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Main Result}
% Adapting a result from \cite{Negahban:2009}, we have the following theorem:
% \begin{theorem}
% For node $i$, assume
% \begin{itemize}
% \item the Hessian verifies the $(S,\gamma)$-RE condition where $S$ is the set of parents of node $i$ (support of $\theta_i$)
% \item $f$ and $1-f$ are log-concave
% \item $|(\log f)'| < \frac{1}{\alpha}$ and $|(\log 1- f)'| < \frac{1}{\alpha}$
% \end{itemize} then with high probability:
% $$\| \theta^*_i - \hat \theta_i \|_2 \leq \frac{6}{\gamma}\sqrt{\frac{s\log m}{\alpha n}}$$
% \end{theorem}
% \begin{corollary}
% By thresholding $\hat \theta_i$, if $n > C' s \log m$, we recover the support of $\theta^*$ and therefore the edges of ${\cal G}$
% \end{corollary}
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}
% \frametitle{Voter Model}
% \begin{itemize}
% \item {\color{red} Red} and {\color{blue} Blue} nodes. At every step, each node $i$ chooses one of its neighbors $j$ with probability $p_{j,i}$ and adopts that color at $t+1$
% \item If {\color{blue} Blue} is `contagious' state:
% \begin{equation}
% \nonumber
% \mathbb{P}(i \in X^{t+1}|X^t) = \sum_{j \in {\cal N}(i)\cap X^t} p_{ji} = X^t \cdot \theta_i
% \end{equation}
% \end{itemize}
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Future Work}
\begin{itemize}
\item Lower bound restricted eigenvalues of expected gram matrix
\item Confidence Intervals
\item Show that $n > C' s \log m$ measurements are necessary w.r.t. expected hessian.
\item Linear Threshold model $\rightarrow$ 1-bit compressed sensing formulation
\item Better lower bounds
\item Active Learning
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%
{\scriptsize
\bibliography{../../paper/sparse}
\bibliographystyle{apalike}
}
%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Analysis}
\begin{block}{Guarantees}
\begin{itemize}
\item Positive result despite correlated measurements \smiley
\item Several measurements per cascade
\item Good finite-sample guarantee
\end{itemize}
\end{block}
\begin{block}{Assumptions}
\begin{itemize}
\item The Hessian must verify the $(S,\gamma)$-RE condition \frownie
\item Can we make a conditional statement on $\Theta$ and not $X_t$?
\end{itemize}
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Restricted Eigenvalue Condition}
\begin{block}{From Hessian to Gram Matrix}
\begin{itemize}
\item If $f$ and $1 -f$ are strictly log-concave with constant $c$, then if $(S, \gamma)$-RE holds for the gram matrix $\frac{1}{n}X X^T$ , then $(S, c \gamma)$-RE holds for ${\cal H}$
\end{itemize}
\end{block}
\begin{block}{From Gram Matrix to Expected Gram Matrix}
\begin{itemize}
\item If $n > C' s^2 \log m$ and $(S, \gamma)$-RE holds for $\mathbb{E}(\frac{1}{n}XX^T)$, then $(S, \gamma/2)$-RE holds for $\frac{1}{n}XX^T$ w.h.p
\item $\mathbb{E}(\frac{1}{n}XX^T)$ only depends on $p_{\text{init}}$ and $(\theta_j)_j$
\end{itemize}
\end{block}
\begin{block}{Expected Gram Matrix}
\begin{itemize}
\item Diagonal : average number of times node is infected
\item Outer-diagonal : average number of times pair of nodes is infected {\emph together}
\end{itemize}
\end{block}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Approximate Sparsity}
\begin{itemize}
\item $\theta^*_{\lceil s \rceil}$ best s-sparse approximation to $\theta^*$
\item $\|\theta^* - \theta^*_{\lceil s \rceil} \|_1$: `tail' of $\theta^*$
\end{itemize}
\begin{theorem}
Under similar conditions on $f$ and a relaxed RE condition, there $\exists C_1, C_2>0$ such that with high probability:
\begin{equation}
\|\hat \theta_i - \theta^*_i\|_2 \leq C_1 \sqrt{\frac{s\log m}{n}} + C_2 \sqrt[4]{\frac{s\log m}{n}}\|\theta^* - \theta^*_{\lceil s \rceil} \|_1
\end{equation}
\end{theorem}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Lower Bound}
\begin{itemize}
\item Under correlation decay assumption for the IC model, ${\Omega}(s \log N/s)$ cascades necessary for graph reconstruction (Netrapalli et Sanghavi SIGMETRICS'12)
\item Adapting (Price \& Woodruff STOC'12), in the approximately sparse case, any algorithm for any generalized linear cascade model such that:
$$\|\hat \theta - \theta^*\|_2 \leq C \|\theta^* - \theta^*_{\lfloor s \rfloor}\|_2$$
requires ${\cal O}(s \log (n/s)/\log C)$ measurement.
\end{itemize}
\end{frame}
\end{document}
|