aboutsummaryrefslogtreecommitdiffstats
path: root/presentation/econcs/beamer.tex
blob: 7d4b5c17dc0f3a1317bbeb4534dbfcf2cda1f37c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
\documentclass[10pt]{beamer}

\usepackage{amssymb, amsmath, graphicx, amsfonts, color}

\title{Estimating a Graph's Parameters from Cascades}
\author{Jean (John) Pouget-Abadie \\ Joint Work with Thibaut (T-bo) Horel}
\date{}

\begin{document}

\begin{frame}
\titlepage
\end{frame}

\begin{frame}
\frametitle{Example}
\begin{figure}
\includegraphics[scale=.25]{../images/drawing.pdf}
\caption{A network}
\end{figure}
\end{frame}

\begin{frame}
\frametitle{Example}
\begin{figure}
\includegraphics[scale=.25]{../images/noedges_step1.pdf}
\caption{Cascade 1: $t=0$}
\end{figure}
\end{frame}

\begin{frame}
\frametitle{Example}
\begin{figure}
\includegraphics[scale=.25]{../images/noedges_step2.pdf}
\caption{Cascade 1: $t=1$}
\end{figure}
\end{frame}

\begin{frame}
\frametitle{Example}
\begin{figure}
\includegraphics[scale=.25]{../images/noedges_step3.pdf}
\caption{Cascade 1: $t=2$}
\end{figure}
\end{frame}

\begin{frame}
\frametitle{Example}
\begin{figure}
\includegraphics[scale=.25]{../images/noedges_step1_cascade2}
\caption{Cascade 2: $t=0$}
\end{figure}
\end{frame}

\begin{frame}
\frametitle{Example}
\begin{figure}
\includegraphics[scale=.25]{../images/noedges_step2_cascade2}
\caption{Cascade 2: $t=1$}
\end{figure}
\end{frame}

\begin{frame}
\frametitle{Example}
\begin{figure}
\includegraphics[scale=.25]{../images/noedges_step3_cascade2}
\caption{Cascade 2: $t=2$}
\end{figure}
\end{frame}


\begin{frame}
\frametitle{Context}

Notation:
\begin{itemize}
\item $({\cal G}, \theta)$ : graph, parameters
\item Cascade: diffusion process of a `behavior' on $({\cal G}, \theta)$
\item $(X_t)_c$ : set of `active' nodes at time t for cascade $c$
\end{itemize}


\begin{table}
\begin{tabular}{c c}
Graph $\implies$ Cascades & Cascades $\implies$ Graph \\ \hline
$({\cal G}, \theta)$ is known & $(X_t)_c$ is observed \\
Predict $(X_t) | X_0$ & Recover $({\cal G}, \theta)$ \\
\end{tabular}
\end{table}

Summary:
\begin{itemize}
\item Many algorithms \emph{require} knowledge of $({\cal G}, \theta)$
\item {\bf Graph Inference} is the problem of \emph{learning} $({\cal G}, \theta)$
\end{itemize}
\end{frame}

\begin{frame}
\begin{block}{Decomposability}
Learning the graph $\Leftrightarrow$ Learning the parents of a single node
\end{block}
\end{frame}


\begin{frame}
\frametitle{Problem Statement}
\begin{itemize}
\pause
\item Can we learn ${\cal G}$ from $(X_t)_c$?
\pause
\item How many cascades? How many steps in each cascade?
\pause
\item Can we learn $\theta$ from $(X_t)_c$?
\pause
\item How does the error decrease with $n_{\text{cascades}}$?
\pause
\item Are there graphs which are easy to learn? Harder to learn?
\pause
\item What kind of diffusion processes can we consider?
\pause
\item What is the minimal number of cascades required to learn $({\cal G}, \theta)$?
\end{itemize}
\end{frame}

\begin{frame}
\frametitle{Notation}
\begin{itemize}
\item n : number of measurements
\item N : number of cascades
\item m : number of nodes
\item s : degree of node considered
\end{itemize}
\end{frame}


\begin{frame}
\frametitle{Related Work}

\begin{itemize}
\pause
\item Can we learn ${\cal G}$ from $(X_t)_c$?
\pause 
\\{\color{blue} Yes}
\pause
\item How many cascades? How many steps in each cascade? 
\pause
\\ {\color{blue} poly(s)$ \log m$ cascades}
\pause
\item Can we learn $\theta$ from $(X_t)_c$? 
\pause
\\ {\color{blue} (?)}
\pause
\item How does the error decrease with $n_{\text{cascades}}$?
\pause
\\ {\color{blue} (?)}
\pause
\item Are there graphs which are easy to learn? Harder to learn?
\pause
\\{\color{blue} Sparse Graphs are easy}
\pause
\item What kind of diffusion processes can we consider?
\pause
\\{\color{blue} IC Model (discrete and continuous)}
\pause
\item What is the minimal number of cascades required to learn $({\cal G}, \theta)$? 
\pause
\\{\color{blue} (?)\dots$s \log m/s$ in specific setting}
\end{itemize}
\end{frame}



\begin{frame}
\frametitle{Our Work}
\begin{itemize}
\pause
\item Can we learn ${\cal G}$ from $(X_t)_c$? 
\pause
\\{\color{blue} Yes} $\rightarrow$ {\color{red} Yes}
\pause
\item How many cascades? How many steps in each cascade? 
\pause
\\ {\color{blue} poly(s)$ \log m$ cascades} $\rightarrow$ {\color{red}   $s\log m$ measurements}
\pause
\item Can we learn $\theta$ from $(X_t)_c$? 
\pause
\\ {\color{blue} (?)} $\rightarrow$ {\color{red} Yes!}
\pause
\item How does the error decrease with $n_{\text{cascades}}$?  
\pause
\\ {\color{blue} (?)} $\rightarrow$ {\color{red} ${\cal O}(\sqrt{s\log m/n})$}
\pause
\item Are there graphs which are easy to learn? Harder to learn? 
\pause
\\ {\color{blue} Sparse Graphs are easy} $\rightarrow$ {\color{red} Approx. sparsity is also easy}
\pause
\item What kind of diffusion processes can we consider? 
\pause
\\ {\color{blue} IC Model (discrete, continuous)} $\rightarrow$ {\color{red} Large class of Cascade Models}
\pause
\item What is the minimal number of cascades required to learn $({\cal G}, \theta)$? 
\pause
\\{\color{blue} $s \log m/s$ in specific setting} $\rightarrow$ {\color{red} $s \log m/s$ for approx. sparse graphs}
\end{itemize}

\end{frame}

\begin{frame}
\frametitle{Voter Model}
\begin{itemize}
\pause
\item {\color{red} Red} and {\color{blue} Blue} nodes. At every step, each node $i$ chooses one of its neighbors $j$ with probability $p_{j,i}$ and adopts that color at $t+1$
\pause
\item If {\color{blue} Blue} is `contagious' state:
\pause
\begin{equation}
\nonumber
\mathbb{P}(i \in X^{t+1}|X^t) = \sum_{j \in {\cal N}(i)\cap X^t} p_{ji} = X^t \cdot \theta_i
\end{equation}
\end{itemize}
\end{frame}

\begin{frame}
\frametitle{Independent Cascade Model}
\begin{itemize}
\pause
\item Each `infected' node $i$ has a probability $p_{i,j}$ of infecting each of his neighbors $j$.
\pause
\item A node stays `infected' for a single turn. Then it becomes `inactive'.
$$\mathbb{P}(j \text{ becomes infected at t+1}|X_{t}) = 1 - \prod_{i \in {\cal N}(j) \cap X_{t}} (1 - p_{i,j})$$
\end{itemize}
\end{frame}

\begin{frame}
\frametitle{Independent Cascade Model}
\begin{align}
\mathbb{P}(j\in X_{t+1}|X_{t}) & = 1 - \prod_{i \in {\cal N}(j) \cap X_{t}} (1 - p_{i,j}) \\
& = 1 - \exp \left[ \sum_{i \in {\cal N}(j) \cap X_{t}} \log(1 - p_{i,j}) \right] \\
& = 1 - \exp \left[ X_{t} \cdot \theta_{i,j}\right]
\end{align}

where $\theta_{i,j} := \log (1 - p_{i,j})$ and $\theta_i := (\theta_{i,j})_j$
\\[5ex]
\begin{itemize}
\item Support of $\vec \theta$ $\Leftrightarrow$ support of $\vec p$
\end{itemize}
\end{frame}

\begin{frame}
\frametitle{Model Comparison}
\begin{table}
\centering
\begin{tabular}{c | c}
Voter Model & Indep. Casc. Model \\[1ex]
\hline \\[.1ex]
Markov & Markov \\[3ex]
Indep. prob. of $\in X^{t+1} | X^t$ & Indep. prob. of $\in X^{t+1} | X^t$  \\[3ex]
$\mathbb{P}(j\in X_{t+1}|X_{t}) = X_{t} \cdot \theta_{i}$ & $\mathbb{P}(j\in X_{t+1}|X_{t}) = 1 - \exp(X_{t} \cdot \theta_{i})$ \\[3ex]
Always Susceptible & Susceptible until infected \\
\includegraphics[scale=.4]{../images/voter_model.pdf} & \includegraphics[scale=.3]{../images/icc_model.pdf} \\
\end{tabular}
\end{table}
\end{frame}

\begin{frame}
\frametitle{Generalized Linear Cascade Models}
\begin{definition}
{\bf Generalized Linear Cascade Model} with inverse link function $f : \mathbb{R} \rightarrow [0,1]$:
\begin{itemize}
\item for each \emph{susceptible} node $j$ in state $s$ at $t$, $\mathbb{P}(j \in X^{t+1}|X^t)$ is a Bernoulli of parameter $f(\theta_j \cdot X^t)$
\end{itemize}
\end{definition}
\end{frame}

\begin{frame}
\frametitle{Sparse Recovery}
\begin{figure}
\includegraphics[scale=.6]{../images/sparse_recovery_illustration.pdf}
\caption{$f(X\cdot\theta) = b$}
\end{figure}
\end{frame}


\begin{frame}
\frametitle{$\ell1$ penalized Maximum Likelihood}
\begin{itemize}
\item Decomposable node by node
\item Sum over susceptible steps
\end{itemize}

\begin{block}{Likelihood function}
\begin{equation}
\nonumber
{\cal L}(\theta| x^1, \dots x^n) =  \frac{1}{{\cal T}_i}  \sum_{t \in {\cal T}_i} x^{t+1}_i \log f(\theta_i \cdot x^t) + (1 - x^{t+1}_i) \log(1 - f(\theta_i \cdot x^t))
\end{equation}
\end{block}

\begin{block}{Algorithm}
\begin{equation}
\nonumber
\theta \in \arg \max_\theta {\cal L}(\theta| x^1, \dots x^n) - \lambda \|\theta\|_1
\end{equation}
\end{block}

\end{frame}

\begin{frame}
\frametitle{Main Result}
\begin{theorem}
Assume condition on the Hessian and certain regularity properties on $f$, then $\exists C>0$ depending only on the properties of the ${\cal G}$, with high probability:
$$\| \theta^*_i - \hat \theta_i \|_2 \leq C\sqrt{\frac{s\log m}{n}}$$
\end{theorem}

\begin{corollary}
By thresholding $\hat \theta_i$, if $n > C' s \log m$, we recover the support of $\theta^*$ and therefore the edges of ${\cal G}$
\end{corollary}

\end{frame}

\begin{frame}
\frametitle{Approximate Sparsity}
\begin{itemize}
\item $\theta^*_{\lceil s \rceil}$ best s-sparse approximation to $\theta^*$
\item $\|\theta^* - \theta^*_{\lceil s \rceil} \|_1$: `tail' of $\theta^*$
\end{itemize}
\begin{theorem}
Assume condition on Hessian and certain regularity properties on $f$, then $\exists C_1, C_2>0$ depending only on the properties of ${\cal G}$, with high probability:
\begin{equation}
\|\hat \theta_i - \theta^*_i\|_2 \leq C_1 \sqrt{\frac{s\log m}{n}} + C_2 \sqrt[4]{\frac{s\log m}{n}}\|\theta^* - \theta^*_{\lceil s \rceil} \|_1
\end{equation}
\end{theorem}
\end{frame}

\begin{frame}
\frametitle{Lower Bound}
\begin{itemize}
\item Under correlation decay assumption for the IC model, ${\Omega}(s \log N/s)$ cascades necessary for graph reconstruction (Netrapalli et Sanghavi SIGMETRICS'12)
\item Adapting (Price \& Woodruff STOC'12), in the approximately sparse case, any algorithm for any generalized linear cascade model such that:
$$\|\hat \theta - \theta^*\|_2 \leq C \|\theta^* - \theta^*_{\lfloor s \rfloor}\|_2$$
requires ${\cal O}(s \log (n/s)/\log C)$ measurement.
\end{itemize}
\end{frame}

\begin{frame}
\frametitle{(RE) assumptions}
\begin{block}{Assumption on Hessian}
\begin{itemize}
\item
Hessian has to verify a `restricted eigenvalue property' i.e smallest eigenvalue on sparse vectors is away from $0$.
\end{itemize}
\end{block}

\begin{block}{From Hessian to Gram Matrix}
\begin{itemize}
\item $\mathbb{E}[X X^T]$ : `expected' Gram matrix of observations
\item $\mathbb{E}[X X^T]_{i,i}$ : $\mathbb{P}$ that node $i$ is infected
\item $\mathbb{E}[X X^T]_{i,j}$ : $\mathbb{P} $that node $i$ and node $j$ are infected simultaneously
\end{itemize}
\end{block}
\end{frame}

\begin{frame}
\frametitle{Future Work}

\begin{block}{Linear Threshold Model}
\begin{itemize}
\item Linear threshold model is a generalized linear cascade, with non-differential inverse link function. $$\mathbb{P}(j \in X^{t+1}|X^t) = sign(\theta_j \cdot X^t - t_j)$$
\end{itemize}
\end{block}

\begin{block}{Noisy Influence Maximization}
\end{block}

\begin{block}{Confidence Intervals}
\end{block}

\begin{block}{Active Learning}
\end{block}
\end{frame}

\end{document}