aboutsummaryrefslogtreecommitdiffstats
path: root/simulation/main.py
blob: 7aa107fce8bb2d52e2346adf2e6fbcbb1088f75d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import numpy as np
import numpy.random as nr
from scipy.optimize import minimize
import matplotlib.pyplot as plt
import seaborn

seaborn.set_style("white")


def likelihood(p, x, y):
    a = np.dot(x, p)
    return np.log(1. - np.exp(-a[y])).sum() - a[~y].sum()


def likelihood_gradient(p, x, y):
    a = np.dot(x, p)
    l = np.log(1. - np.exp(-a[y])).sum() - a[~y].sum()
    g1 = 1. / (np.exp(a[y]) - 1.)
    g = (x[y] * g1[:, np.newaxis]).sum(0) - x[~y].sum(0)
    return l, g


def test_gradient(x, y):
    eps = 1e-10
    for i in xrange(x.shape[1]):
        p = 0.5 * np.ones(x.shape[1])
        a = np.dot(x, p)
        g1 = 1. / (np.exp(a[y]) - 1.)
        g = (x[y] * g1[:, np.newaxis]).sum(0) - x[~y].sum(0)
        p[i] += eps
        f1 = likelihood(p, x, y)
        p[i] -= 2 * eps
        f2 = likelihood(p, x, y)
        print g[i], (f1 - f2) / (2 * eps)


def infer(x, y):
    def f(p):
        l, g = likelihood_gradient(p, x, y)
        return -l, -g
    x0 = np.ones(x.shape[1])
    bounds = [(0, None)] * x.shape[1]
    return minimize(f, x0, jac=True, bounds=bounds, method="L-BFGS-B").x


def bootstrap(x, y, n_iter=100):
    rval = np.zeros((n_iter, x.shape[1]))
    for i in xrange(n_iter):
        indices = np.random.choice(len(y), replace=False, size=int(len(y)*.9))
        rval[i] = infer(x[indices], y[indices])
    return rval


def confidence_interval(counts, bins):
    k = 0
    while np.sum(counts[len(counts)/2-k:len(counts)/2+k]) <= .95*np.sum(counts):
        k += 1
    return bins[len(bins)/2-k], bins[len(bins)/2+k]


def build_matrix(cascades, node):

    def aux(cascade, node):
        xlist, slist = zip(*cascade)
        indices = [i for i, s in enumerate(slist) if s[node] and i >= 1]
        if indices:
            x = np.vstack(xlist[i-1] for i in indices)
            y = np.array([xlist[i][node] for i in indices])
            return x, y
        else:
            return None

    pairs = (aux(cascade, node) for cascade in cascades)
    xs, ys = zip(*(pair for pair in pairs if pair))
    x = np.vstack(xs)
    y = np.concatenate(ys)
    return x, y


def simulate_cascade(x, graph):
    """
    Simulate an IC cascade given a graph and initial state.

    For each time step we yield:
        - susc: the nodes susceptible at the beginning of this time step
        - x: the subset of susc who became infected
    """
    susc = np.ones(graph.shape[0], dtype=bool)  # t=0, everyone is susceptible
    yield x, susc
    while np.any(x):
        susc = susc ^ x  # nodes infected at previous step are now inactive
        if not np.any(susc):
            break
        x = 1 - np.exp(-np.dot(graph.T, x))
        y = nr.random(x.shape[0])
        x = (x >= y) & susc
        yield x, susc


def simulate_cascades(n, graph):
    for _ in xrange(n):
        x0 = np.zeros(graph.shape[0], dtype=bool)
        x0[nr.randint(0, graph.shape[0])] = True
        yield simulate_cascade(x0, graph)


if __name__ == "__main__":
    g = np.array([[0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0]])
    p = 0.5
    g = np.log(1. / (1 - p * g))
    sizes = [100, 500, 1000, 5000, 10000]
    error = []
    for i in sizes:
        cascades = simulate_cascades(i, g)
        x, y = build_matrix(cascades, 0)
        conf = bootstrap(x, y, n_iter=100)
        estimand = np.linalg.norm(np.delete(conf - g[0], 0, axis=1), axis=1)
        error.append(confidence_interval(*np.histogram(estimand, bins=50)))
    plt.semilogx(sizes, error)
    plt.show()