1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
import pymc
import numpy as np
def glm_node_setup(cascade, y_obs, prior=None, *args, **kwargs):
"""
Build an IC PyMC node-level model from:
-observed cascades: cascade
-outcome vector: y_obs
-desired PyMC prior and parameters: prior, *args
Note: we use the glm formulation: y = Bernoulli[f(x.dot(theta))]
"""
n_nodes = len(cascade[0])
# Container class for node's parents
theta = np.empty(n_nodes, dtype=object)
for j in xrange(n_nodes):
if prior is None:
theta[j] = pymc.Beta('theta_{}'.format(j), alpha=1, beta=1)
else:
theta[j] = prior('theta_{}'.format(j), *args, **kwargs)
# Observed container class for cascade realization
x = np.empty(n_nodes, dtype=object)
for i, val in enumerate(cascade.T):
x[i] = pymc.Normal('x_{}'.format(i), 0, 1, value=val, observed=True)
@pymc.deterministic
def glm_p(x=x, theta=theta):
return 1. - np.exp(-x.dot(theta))
@pymc.observed
def y(glm_p=glm_p, value=y_obs):
return pymc.bernoulli_like(value, glm_p)
return pymc.Model([y, pymc.Container(theta), pymc.Container(x)])
def formatLabel(s, n):
return '0'*(len(str(n)) - len(str(s))) + str(s)
def mc_graph_setup(infected, susceptible, prior=None, *args, **kwargs):
"""
Build an IC PyMC graph-level model from:
-infected nodes over time: list/tuple of list/tuple of np.array
-susceptible nodes over time: same format as above
Note: we use the Markov Chain formulation: X_{t+1}|X_t,theta = f(X_t.theta)
"""
# Container class for graph parameters
n_nodes = len(infected[0][0])
theta = np.empty((n_nodes,n_nodes), dtype=object)
if prior is None:
for i in xrange(n_nodes):
for j in xrange(n_nodes):
theta[i, j] = pymc.Beta('theta_{}{}'.format(formatLabel(i,
n_nodes-1), formatLabel(j, n_nodes-1)),
alpha=1, beta=1)
else:
theta = prior(theta=theta, *args, **kwargs)
# Container class for cascade realization
x = {}
for i, cascade in enumerate(infected):
for j, step in enumerate(cascade):
for k, node in enumerate(step):
if j and susceptible[i][j][k]:
p = 1. - pymc.exp(-cascade[j-1].dot(theta[k]))
else:
p = .5
x[i, j, k] = pymc.Bernoulli('x_{}{}{}'.format(i, j, k), p=p,
value=node, observed=True)
return pymc.Model([pymc.Container(theta), pymc.Container(x)])
if __name__=="__main__":
import main
import matplotlib.pyplot as plt
import seaborn
seaborn.set_style('whitegrid')
g = np.array([[0, 1, 1, 0], [1, 0, 0, 1], [1, 0, 0, 1], [0, 1, 1, 0]])
p = 0.5
g = np.log(1. / (1 - p * g))
print('running the graph-level MC set-up')
n_nodes = len(g)
cascades = main.simulate_cascades(1000, g)
infected, susc = main.build_cascade_list(cascades)
model = mc_graph_setup(infected, susc)
mcmc = pymc.MCMC(model)
mcmc.sample(10**4, 1000)
fig, ax = plt.subplots(len(g), len(g))
for i in xrange(n_nodes):
for j in xrange(n_nodes):
if n_nodes < 5:
ax[i,j].locator_params(nbins=3, axis='x')
else:
ax[i, j].get_xaxis().set_ticks([])
ax[i, j].get_yaxis().set_ticks([])
it, jt = formatLabel(i, n_nodes-1), formatLabel(j, n_nodes-1)
ax[i,j].hist(mcmc.trace('theta_{}{}'.format(it,jt))[:], normed=True)
ax[i, j].set_xlim([0,1])
ax[i, j].plot([g[i, j]]*2, [0, ax[i,j].get_ylim()[-1]], color='red')
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=.1)
plt.show()
print('running the node level set-up')
node = 0
cascades = main.simulate_cascades(100, g)
cascade, y_obs = main.build_matrix(cascades, node)
model = glm_node_setup(cascade, y_obs)
mcmc = pymc.MCMC(model)
mcmc.sample(1e5, 1e4)
plt.hist(mcmc.trace('theta_1')[:], bins=1e2)
plt.show()
|