aboutsummaryrefslogtreecommitdiffstats
path: root/simulation/utils_blocks.py
blob: 72a6881b95d59f03fb2a6ce2bfd2841f457f90f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from theano import tensor as tsr
import fuel.datasets
import blocks.extensions as be
import picklable_itertools
import numpy as np
from json import dumps
import collections
import utils


class LearnedDataset(fuel.datasets.Dataset):
    """
    Dynamically-created dataset (for active learning)
        -compatible with ConstantScheme with request corresponding to a
        batch_size
    """
    provides_sources = ('x', 's')

    def __init__(self, node_p, graph, **kwargs):
        super(LearnedDataset, self).__init__(**kwargs)
        self.node_p = node_p
        self.graph = graph
        self.source = lambda graph: utils.random_source(graph, self.node_p)

    def get_data(self, state=None, request=None):
        return utils.simulate_cascades(request, self.graph, self.source)


class ActiveLearning(be.SimpleExtension):
    """
    Extension which updates the node_p array passed to the get_data method of
    LearnedDataset
    """
    def __init__(self, dataset, params, **kwargs):
        super(ActiveLearning, self).__init__(**kwargs)
        self.dataset = dataset
        self.params = params

    def do(self, which_callback, *args):
        exp_out_par = np.exp(np.sum(self.params, axis=1))
        self.dataset.node_p = exp_out_par / np.sum(exp_out_par)


class JSONDump(be.SimpleExtension):
    """Dump a JSON-serialized version of the log to a file."""

    def __init__(self, filename, **kwargs):
        super(JSONDump, self).__init__(**kwargs)
        self.fh = open(filename, "w")

    def do(self, which_callback, *args):
        log = self.main_loop.log
        d = {k: v for (k, v) in log.current_row.items()
             if not k.startswith("_")}
        d["time"] = log.status["iterations_done"]
        self.fh.write(dumps(d, default=lambda o: str(o)) + "\n")

    def __del__(self):
        self.fh.close()


class ShuffledBatchesScheme(fuel.schemes.ShuffledScheme):
    """Iteration scheme over finite dataset:
        -shuffles batches but not within batch
        -arguments: dataset_size (int) ; batch_size (int)"""
    def get_request_iterator(self):
        indices = list(self.indices)  # self.indices = xrange(dataset_size)
        start = np.random.randint(self.batch_size)
        batches = list(map(
            list,
            picklable_itertools.extras.partition_all(self.batch_size,
                                                     indices[start:])
        ))
        if indices[:start]:
            batches.append(indices[:start])
        batches = np.asarray(batches)
        return iter(batches[np.random.permutation(len(batches))])


def rmse_error(graph, params):
    n_nodes = graph.shape[0]
    diff = (graph - params) ** 2
    subarray = tsr.arange(n_nodes)
    tsr.set_subtensor(diff[subarray, subarray], 0)
    rmse = tsr.sum(diff) / (n_nodes ** 2)
    rmse.name = 'rmse'
    return rmse


def relative_error(graph, params):
    n_nodes = graph.shape[0]
    diff = abs(graph - params)
    subarray = tsr.arange(n_nodes)
    tsr.set_subtensor(diff[subarray, subarray], 0)
    error = tsr.sum(tsr.switch(tsr.eq(graph, 0.), 0., diff / graph)) / n_nodes
    error.name = 'rel_error'
    return error


def fixed_data_stream(n_obs, graph, batch_size, shuffle=True):
    """
    creates a datastream for a fixed (not learned) dataset:
        -shuffle (bool): shuffle minibatches but not within minibatch, else
        sequential (non-shuffled) batches are used
    """
    x_obs, s_obs = utils.simulate_cascades(n_obs, graph)
    data_set = fuel.datasets.base.IndexableDataset(collections.OrderedDict(
        [('x', x_obs), ('s', s_obs)]
    ))
    if shuffle:
        scheme = ShuffledBatchesScheme(n_obs, batch_size=batch_size)
    else:
        scheme = fuel.schemes.SequentialScheme(n_obs, batch_size=batch_size)
    return fuel.streams.DataStream(dataset=data_set, iteration_scheme=scheme)


def dynamic_data_stream(graph, batch_size):
    node_p = np.ones(len(graph)) / len(graph)
    data_set = LearnedDataset(node_p, graph)
    scheme = fuel.schemes.ConstantScheme(batch_size)
    return fuel.streams.DataStream(dataset=data_set, iteration_scheme=scheme)