1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
import time
import main as mn
import numpy as np
import logging
import scipy.special as ssp
from itertools import product
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s',
level=logging.INFO)
def g(m):
assert (m > 0).all()
return np.log(1 - np.exp(-m))
def h(m):
return -m
def ll(x, s, theta):
"""
x : infected
s : susceptible
"""
res = 0
for t in range(1, x.shape[0]):
w = np.dot(x[t-1], theta)
res += g(w)[x[t]].sum() + h(w)[~x[t] & s[t]].sum()
return res
def sample(params):
mu, v = params
size = mu.shape
return np.clip(np.random.beta(mu, v, size=size), 1e-3, 1e5)
def ll_full(params, x, s, nsamples=50):
return np.mean([ll(x, s, sample(params)) for _ in xrange(nsamples)])
def kl(params1, params0):
mu0, sig0 = params0
mu1, sig1 = params1
return (ssp.betaln(mu0, sig0) - ssp.betaln(mu1, sig1) + (mu0 - mu1) *
ssp.psi(mu0) + (sig0 - sig1) * ssp.psi(sig0) + (mu1 - mu0 + sig1 -
sig0) * ssp.psi(mu0 + sig0)).sum()
def aux(var, res, i, j, f, eps):
var[i,j] += eps
res[i,j] += f(var)
var[i,j] -= 2 * eps
res[i,j] -= f(var)
res[i,j] /= 2 * eps
var[i, j] += eps
def grad_ll_full(params, x, s, nsamples=50, eps=1e-5):
mu, v = params
n, m = mu.shape
mugrad = np.empty((n,m))
vgrad = np.empty((n,m))
for (i, j) in product(xrange(n), xrange(m)):
aux(mu, mugrad, i, j, lambda t: ll_full((t, v), x, s, nsamples), eps)
aux(v, vgrad, i, j, lambda t: ll_full((mu, t), x, s, nsamples), eps)
return mugrad, vgrad
def grad_kl(params1, params0, eps=1e-5):
mu0, sig0 = params0
mu1, sig1 = params1
n, m = mu0.shape
mugrad = np.empty((n,m))
vgrad = np.empty((n,m))
for (i, j) in product(xrange(n), xrange(m)):
aux(mu1, mugrad, i, j, lambda t: kl((t, sig1), params0), eps)
aux(sig1, vgrad, i, j, lambda t: kl((mu1, t), params0), eps)
return mugrad, vgrad
def sgd(mu1, sig1, mu0, sig0, cascades, n_e=100, lr=lambda t: 1e-1, n_print=10):
g_mu1, g_sig1 = grad_kl((mu1, sig1), (mu0, sig0))
for t in xrange(n_e):
lrt = lr(t) # learning rate
mu1 = np.clip(mu1 + lrt * g_mu1, 1e-3, 1e5)
sig1 = np.clip(sig1 + lrt * g_sig1, 1e-3, 1e5)
for step, (x, s) in enumerate(zip(*cascades)):
g_mu1, g_sig1 = grad_ll_full((mu1, sig1), x, s)
mu1 = np.clip(mu1 + lrt * g_mu1, 1e-3, 1e5)
sig1 = np.clip(sig1 + lrt * g_sig1, 1e-3, 1e5)
res = np.sum(ll_full((mu1, sig1), x, s) for x, s in zip(*cascades))\
+ kl((mu1, sig1), (mu0, sig0))
#if step % n_print == 0:
logging.info("Epoch:{}\tStep:{}\tLB:{}\t".format(t, step, res))
print mu1
print sig1
if __name__ == '__main__':
graph = np.array([[0, 0, 1], [0, 0, 0.5], [0, 0, 0]])
#graph = np.random.binomial(2, p=.2, size=(4, 4))
p = 0.5
graph = np.log(1. / (1 - p * graph))
print(graph)
cascades = mn.build_cascade_list(mn.simulate_cascades(100, graph))
mu0, sig0 = (1. + .2 * np.random.normal(size=graph.shape),
1 + .2 * np.random.normal(size=graph.shape))
mu1, sig1 = (1. + .2 * np.random.normal(size=graph.shape),
1 + .2 * np.random.normal(size=graph.shape))
sgd(mu1, sig1, mu0, sig0, cascades, n_e=30, n_print=1)
|