1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
import theano
import cascade_creation
from theano import tensor, function
import numpy as np
import timeout
import cvxopt
@timeout.timeout(20)
def sparse_recovery(M_val, w_val, lbda):
"""
Solves:
min - sum_j theta_j + lbda*|e^{M*theta} - (1 - w)|_2
s.t theta_j <= 0
"""
assert len(M_val) == len(w_val)
if M_val.dtype == bool:
M_val = M_val.astype('float32')
if type(lbda) == int:
lbda = np.array(lbda)
theta = tensor.row().T
theta_ = theta.flatten()
M = theano.shared(M_val.astype(theano.config.floatX))
w = theano.shared(w_val.astype(theano.config.floatX))
lbda = theano.shared(lbda.astype(theano.config.floatX))
y = (theta_).norm(1) + lbda * (
tensor.exp(M.dot(theta_)) - (1 - w)).norm(2)
return diff_and_opt(theta, theta_, M, w, lbda, y)
def diff_and_opt(theta, theta_, M, w, lbda, y):
z = tensor.row().T
z_ = z.flatten()
m, n = M_val.shape
y_diff = tensor.grad(y, theta_)
y_hess = z[0] * theano.gradient.hessian(y, theta_)
f_x = theano.function([theta], [y, y_diff], allow_input_downcast=True)
f_xz = theano.function([theta, z], [y, y_diff, y_hess],
allow_input_downcast=True)
def F(x=None, z=None):
if x is None:
return 0, cvxopt.matrix(.0001, (n,1))
elif z is None:
y, y_diff = f_x(x)
return cvxopt.matrix(float(y), (1, 1)),\
cvxopt.matrix(y_diff.astype("float64")).T
else:
y, y_diff, y_hess = f_xz(x, z)
return cvxopt.matrix(float(y), (1, 1)), \
cvxopt.matrix(y_diff.astype("float64")).T, \
cvxopt.matrix(y_hess.astype("float64"))
G = cvxopt.spdiag([1 for i in xrange(n)])
h = cvxopt.matrix(0.0, (n,1))
cvxopt.solvers.options['show_progress'] = False
try:
theta = cvxopt.solvers.cp(F, G, h)['x']
except ArithmeticError:
print "ArithmeticError thrown, change initial point"+\
" given to the solver"
return 1 - np.exp(theta), theta
def test():
"""
unit test
"""
lbda = 10
G = cascade_creation.InfluenceGraph(max_proba=.8)
G.erdos_init(n=100, p = .1)
A = cascade_creation.generate_cascades(G, .1, 2000)
M_val, w_val = cascade_creation.icc_matrixvector_for_node(A, 0)
p_vec, theta = l1obj_l2penalization(M_val, w_val, lbda)
print p_vec
if __name__=="__main__":
test()
|