aboutsummaryrefslogtreecommitdiffstats
path: root/src/convex_optimization.py
blob: 96dc26fa44ac0a1c9927f7d4d4ea0db9f5cb3b88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import theano
import cascade_creation
from theano import tensor, function
import numpy as np
import timeout
import cvxopt


@timeout.timeout(20)
def l1obj_l2constraint(M_val, w_val):
    """
    Solves:
        min - sum_j theta_j
        s.t theta_j <= 0
            |e^{M*theta} - (1 - w)|_2 <= 1
    """
    assert len(M_val) == len(w_val)

    if M_val.dtype == bool:
        M_val = M_val.astype('float32')

    m, n = M_val.shape
    c = cvxopt.matrix(-1.0, (n,1))

    theta = tensor.row().T
    z = tensor.row().T
    theta_ = theta.flatten()
    z_ = z.flatten()
    M = theano.shared(M_val.astype(theano.config.floatX))
    w = theano.shared(w_val.astype(theano.config.floatX))
    y = (tensor.exp(M.dot(theta_)) - (1 - w)).norm(2) - 1
    y_diff = tensor.grad(y, theta_)
    y_hess = z[0] * theano.gradient.hessian(y, theta_)
    f_x = theano.function([theta], [y, y_diff], allow_input_downcast=True)
    f_xz = theano.function([theta, z], [y, y_diff, y_hess],
                            allow_input_downcast=True)

    def F(x=None, z=None):
        if x is None:
            return 1, cvxopt.matrix(.0001, (n,1))
        elif z is None:
            y, y_diff = f_x(x)
            return cvxopt.matrix(float(y), (1, 1)),\
                    cvxopt.matrix(y_diff.astype("float64")).T
        else:
            y, y_diff, y_hess = f_xz(x, z)
            return cvxopt.matrix(float(y), (1, 1)), \
                    cvxopt.matrix(y_diff.astype("float64")).T, \
                    cvxopt.matrix(y_hess.astype("float64"))

    G = cvxopt.spdiag([1 for i in xrange(n)])
    h = cvxopt.matrix(0.0, (n,1))

    cvxopt.solvers.options['show_progress'] = False
    try:
        theta = cvxopt.solvers.cpl(c,F, G, h)['x']
    except ArithmeticError:
        print "ArithmeticError thrown, change initial point"+\
              " given to the solver"

    return 1 - np.exp(theta), theta


@timeout.timeout(20)
def l1obj_l2penalization(M_val, w_val, lbda):
    """
    Solves:
        min - sum_j theta_j + lbda*|e^{M*theta} - (1 - w)|_2
        s.t theta_j <= 0
    """
    assert len(M_val) == len(w_val)

    if M_val.dtype == bool:
        M_val = M_val.astype('float32')

    if type(lbda) == int:
        lbda = np.array(lbda)

    m, n = M_val.shape

    theta = tensor.row().T
    z = tensor.row().T
    theta_ = theta.flatten()
    z_ = z.flatten()
    M = theano.shared(M_val.astype(theano.config.floatX))
    w = theano.shared(w_val.astype(theano.config.floatX))
    lbda = theano.shared(lbda.astype(theano.config.floatX))
    y = (theta_).norm(1) + lbda * (
        tensor.exp(M.dot(theta_)) - (1 - w)).norm(2)
    y_diff = tensor.grad(y, theta_)
    y_hess = z[0] * theano.gradient.hessian(y, theta_)
    f_x = theano.function([theta], [y, y_diff], allow_input_downcast=True)
    f_xz = theano.function([theta, z], [y, y_diff, y_hess],
                           allow_input_downcast=True)

    def F(x=None, z=None):
        if x is None:
            return 0, cvxopt.matrix(.0001, (n,1))
        elif z is None:
            y, y_diff = f_x(x)
            return cvxopt.matrix(float(y), (1, 1)),\
                   cvxopt.matrix(y_diff.astype("float64")).T
        else:
            y, y_diff, y_hess = f_xz(x, z)
            return cvxopt.matrix(float(y), (1, 1)), \
                    cvxopt.matrix(y_diff.astype("float64")).T, \
                    cvxopt.matrix(y_hess.astype("float64"))

    G = cvxopt.spdiag([1 for i in xrange(n)])
    h = cvxopt.matrix(0.0, (n,1))

    cvxopt.solvers.options['show_progress'] = False
    try:
        theta = cvxopt.solvers.cp(F, G, h)['x']
    except ArithmeticError:
        print "ArithmeticError thrown, change initial point"+\
              " given to the solver"

    return 1 - np.exp(theta), theta


def test():
    """
    unit test
    """
    lbda = 10
    G = cascade_creation.InfluenceGraph(max_proba=.8)
    G.erdos_init(n=100, p = .1)
    A = cascade_creation.generate_cascades(G, .1, 2000)
    M_val, w_val = cascade_creation.icc_matrixvector_for_node(A, 0)
    p_vec, theta = l1obj_l2penalization(M_val, w_val, lbda)
    print p_vec

if __name__=="__main__":
    test()