aboutsummaryrefslogtreecommitdiffstats
path: root/src/convex_optimization.py
blob: 000143f0c52466b955e003464b23044ec21a1d30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import theano
import cascade_creation
from theano import tensor, function
import numpy as np
import timeout
import cvxopt


@timeout.timeout(20)
def sparse_recovery(lbda, n_cascades):
    """
    Solves:
        min lbda * |theta|_1 - 1/n_cascades*(
                sum w log(e^[M*theta]) + (1-w) log(1-e^[M*theta])
            )
        s.t theta_j <= 0

    The objective must be re-normalized:
    -> log(e^x - 1) = (1-k)x + log(e^[kx] - 1)
    with k chosen as : n_nodes*n_cascades
    """
    if type(lbda) == int or type(lbda) == float:
        lbda = np.array(lbda)

    lbda = theano.shared(lbda.astype(theano.config.floatX))

    theta = tensor.row().T
    theta_ = theta.flatten()

    M = tensor.matrix(name='M', dtype=theano.config.floatX)
    w = tensor.vector(name='w', dtype=theano.config.floatX)

    y =  lbda * theta_.norm(1) - 1./n_cascades*(
            (w).dot(tensor.log(1-tensor.exp(M.dot(theta_))))
            + (1-w).dot(tensor.dot(M, theta_))
        )

    z = tensor.row().T
    z_ = z.flatten()

    y_diff = tensor.grad(y, theta_)
    y_hess = z[0] * theano.gradient.hessian(y, theta_)
    f_x = theano.function([theta, M, w], [y, y_diff],
                        allow_input_downcast=True)
    f_xz = theano.function([theta, z, M, w], [y, y_diff, y_hess],
                        allow_input_downcast=True)

    return f_x, f_xz


def type_lasso(lbda, n_cascades):
    """
    Solves:
        min - sum_j theta_j + lbda*|e^{M*theta} - (1 - w)|_2
        s.t theta_j <= 0
    """
    if type(lbda) == int or type(lbda) == float:
        lbda = np.array(lbda)

    lbda = theano.shared(lbda.astype(theano.config.floatX))

    theta = tensor.row().T
    theta_ = theta.flatten()

    M = tensor.matrix(name='M', dtype=theano.config.floatX)
    w = tensor.vector(name='w', dtype=theano.config.floatX)

    y = lbda * (theta_).norm(1) + (
        tensor.exp(M.dot(theta_)) - (1 - w)).norm(2)

    z = tensor.row().T
    z_ = z.flatten()

    y_diff = tensor.grad(y, theta_)
    y_hess = z[0] * theano.gradient.hessian(y, theta_)
    f_x = theano.function([theta, M, w], [y, y_diff],
                        allow_input_downcast=True)
    f_xz = theano.function([theta, z, M, w], [y, y_diff, y_hess],
                        allow_input_downcast=True)

    return f_x, f_xz

@timeout.timeout(70)
def diff_and_opt(M_val, w_val, f_x, f_xz):

    if M_val.dtype == bool:
        M_val = M_val.astype(theano.config.floatX)

    m, n = M_val.shape

    def F(x=None, z=None):
        if x is None:
            return 0, cvxopt.matrix(-.1, (n,1))
        elif z is None:
            y, y_diff = f_x(x, M_val, w_val)
            return cvxopt.matrix(float(y), (1, 1)),\
                   cvxopt.matrix(y_diff.astype("float64")).T
        else:
            y, y_diff, y_hess = f_xz(x, z, M_val, w_val)
            return cvxopt.matrix(float(y), (1, 1)), \
                    cvxopt.matrix(y_diff.astype("float64")).T, \
                    cvxopt.matrix(y_hess.astype("float64"))

    G = cvxopt.spdiag([1 for i in range(n)])
    h = cvxopt.matrix(0.0, (n,1))

    #Relaxing precision constraints
    # cvxopt.solvers.options['feastol'] = 2e-5
    # cvxopt.solvers.options['abstol'] = 2e-5
    # cvxopt.solvers.options['maxiters'] = 50
    cvxopt.solvers.options['show_progress'] = False
    try:
        theta = cvxopt.solvers.cp(F, G, h)['x']
    except ArithmeticError:
        print("ArithmeticError thrown, change initial point"
              " given to the solver")
    except ValueError:
        print("Domain Error, skipping to next node")
        theta = np.zeros(M_val.shape[1])

    if cvxopt.solvers.options['show_progress']:
        print(1 - np.exp(theta))

    return 1 - np.exp(theta), theta


def test():
    """
    unit test
    """
    lbda = .0001
    G = cascade_creation.InfluenceGraph(max_proba=.9)
    G.erdos_init(n=20, p = .3)
    A = cascade_creation.generate_cascades(G, .1, 500)
    M_val, w_val = cascade_creation.icc_matrixvector_for_node(A, 2)
    print(len(M_val))

    #Type lasso
    if 0:
        f_x, f_xz = type_lasso(lbda)
        p_vec, _ = diff_and_opt(M_val, w_val, f_x, f_xz)
        print(G.mat[2])

    #Sparse recovery
    if 1:
        f_x, f_xz = sparse_recovery(lbda, 500)
        p_vec, _ = diff_and_opt(M_val, w_val, f_x, f_xz)
        print(G.mat[2])

if __name__=="__main__":
    test()