1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
import theano
import cascade_creation
from theano import tensor, function
import numpy as np
import timeout
import cvxopt
@timeout.timeout(10)
def sparse_recovery(M_val, w_val, lbda):
"""
Solves:
min lbda * |theta|_1 - 1/n_cascades*(
sum w log(e^[M*theta]) + (1-w) log(1-e^[M*theta])
)
s.t theta_j <= 0
The objective must be re-normalized:
-> log(e^x - 1) = (1-k)x + log(e^[kx] - 1)
with k chosen as : n_nodes*n_cascades
"""
assert len(M_val) == len(w_val)
if M_val.dtype == bool:
M_val = M_val.astype('float32')
if type(lbda) == int:
lbda = np.array(lbda)
m, n = M_val.shape
theta = tensor.row().T
theta_ = theta.flatten()
M = theano.shared(M_val.astype(theano.config.floatX))
w = theano.shared(w_val.astype(theano.config.floatX))
lbda = theano.shared(lbda.astype(theano.config.floatX))
y = lbda * theta_.norm(1) - 1./m*(
tensor.dot(1-w, tensor.log(1-tensor.exp(M.dot(theta_))))
+ tensor.dot(w, tensor.dot(M, theta_))
)
return diff_and_opt(theta, theta_, M, M_val, w, lbda, y)
@timeout.timeout(20)
def type_lasso(M_val, w_val, lbda):
"""
Solves:
min - sum_j theta_j + lbda*|e^{M*theta} - (1 - w)|_2
s.t theta_j <= 0
"""
assert len(M_val) == len(w_val)
if M_val.dtype == bool:
M_val = M_val.astype('float32')
if type(lbda) == int:
lbda = np.array(lbda)
theta = tensor.row().T
theta_ = theta.flatten()
M = theano.shared(M_val.astype(theano.config.floatX))
w = theano.shared(w_val.astype(theano.config.floatX))
lbda = theano.shared(lbda.astype(theano.config.floatX))
y = lbda * (theta_).norm(1) + (
tensor.exp(M.dot(theta_)) - (1 - w)).norm(2)
return diff_and_opt(theta, theta_, M, M_val, w, lbda, y)
def diff_and_opt(theta, theta_, M, M_val, w, lbda, y):
z = tensor.row().T
z_ = z.flatten()
m, n = M_val.shape
y_diff = tensor.grad(y, theta_)
y_hess = z[0] * theano.gradient.hessian(y, theta_)
f_x = theano.function([theta], [y, y_diff], allow_input_downcast=True)
f_xz = theano.function([theta, z], [y, y_diff, y_hess],
allow_input_downcast=True)
def F(x=None, z=None):
if x is None:
return 0, cvxopt.matrix(-.001, (n,1))
elif z is None:
y, y_diff = f_x(x)
return cvxopt.matrix(float(y), (1, 1)),\
cvxopt.matrix(y_diff.astype("float64")).T
else:
y, y_diff, y_hess = f_xz(x, z)
return cvxopt.matrix(float(y), (1, 1)), \
cvxopt.matrix(y_diff.astype("float64")).T, \
cvxopt.matrix(y_hess.astype("float64"))
G = cvxopt.spdiag([1 for i in range(n)])
h = cvxopt.matrix(0.0, (n,1))
#Relaxing precision constraints
#cvxopt.solvers.options['feastol'] = 2e-5
#cvxopt.solvers.options['abstol'] = 2e-5
#cvxopt.solvers.options['maxiters'] = 100
cvxopt.solvers.options['show_progress'] = True
try:
theta = cvxopt.solvers.cp(F, G, h)['x']
except ArithmeticError:
print("ArithmeticError thrown, change initial point"+\
" given to the solver")
if cvxopt.solvers.options['show_progress']:
print(1 - np.exp(theta))
return 1 - np.exp(theta), theta
def test():
"""
unit test
"""
lbda = 1
G = cascade_creation.InfluenceGraph(max_proba=.9)
G.erdos_init(n=10, p = .3)
A = cascade_creation.generate_cascades(G, .1, 1000)
M_val, w_val = cascade_creation.icc_matrixvector_for_node(A, 0)
#Type lasso
if 0:
p_vec, theta = type_lasso(M_val, w_val, lbda)
print(p_vec)
#Sparse recovery
if 1:
p_vec, theta = sparse_recovery(M_val, w_val, lbda)
print(G.mat[0])
print(p_vec)
if __name__=="__main__":
test()
|