aboutsummaryrefslogtreecommitdiffstats
path: root/src/make_plots.py
blob: 5b9664cc6e83d345f69a340fb3ecf4beea3699ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import matplotlib.pyplot as plt
import numpy as np
import cascade_creation
import convex_optimization
import algorithms
import rip_condition


def compare_greedy_and_lagrange_cs284r():
    """
    Compares the performance of the greedy algorithm on the
    lagrangian sparse recovery objective on the Facebook dataset
    for the CS284r project
    """
    G = cascade_creation.InfluenceGraph(max_proba = .8)
    G.import_from_file("../datasets/subset_facebook_SNAPnormalize.txt")
    A = cascade_creation.generate_cascades(G, p_init=.05, n_cascades=100)

    #Greedy
    G_hat = algorithms.greedy_prediction(G, A)
    algorithms.correctness_measure(G, G_hat, print_values=True)

    #Lagrange Objective
    G_hat = algorithms.recovery_l1obj_l2constraint(G, A,
            passed_function=convex_optimization.type_lasso,
            floor_cstt=.05, lbda=10)
    algorithms.correctness_measure(G, G_hat, print_values=True)


def watts_strogatz(n_cascades, lbda, passed_function):
    """
    Test running time on different algorithms
    """
    G = cascade_creation.InfluenceGraph(max_proba=1, min_proba=.2)
    G.import_from_file("../datasets/watts_strogatz_500_80_point3.txt")
    A = cascade_creation.generate_cascades(G, p_init=.05, n_cascades=n_cascades)

    if passed_function==algorithms.greedy_prediction:
        G_hat = algorithms.greedy_prediction(G, A)
    else:
        G_hat = algorithms.recovery_passed_function(G, A,
                passed_function=passed_function,
                floor_cstt=.1, lbda=lbda, n_cascades=1000)
    algorithms.correctness_measure(G, G_hat, print_values=True)


def test():
    """
    unit test
    """
    G = cascade_creation.InfluenceGraph(max_proba=1, min_proba=.2)
    G.erdos_init(n=50, p=.2)
    A = cascade_creation.generate_cascades(G, p_init=.1, n_cascades=1000)
    G_hat = algorithms.recovery_passed_function(G, A,
                passed_function=convex_optimization.sparse_recovery,
                floor_cstt=.1, lbda=.001, n_cascades=1000)
    algorithms.correctness_measure(G, G_hat, print_values=True)


if __name__=="__main__":
    watts_strogatz(n_cascades=2000, lbda=.001, passed_function=
        algorithms.greedy_prediction)