1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
|
import matplotlib.pyplot as plt
import numpy as np
import cascade_creation
import convex_optimization
import algorithms
import rip_condition
def plot_rip_numberofnodes(max_proba, n_min, n_max, p_init, n_cascades, K_max):
"""
Plots the RIP constant for varying number of nodes (n_max included)
"""
x = np.arange(n_min, n_max+1)
y = []
for n_nodes in x:
print n_nodes
G = cascade_creation.InfluenceGraph(max_proba=.3)
G.erdos_init(n=n_nodes, p=.1) #TODO: handle different inits!
cascades = cascade_creation.generate_cascades(G, p_init=p_init,
n_cascades=n_cascades)
M, __ = cascade_creation.icc_matrixvector_for_node(cascades, None)
M = cascade_creation.normalize_matrix(M)
y.append(rip_condition.find_kth_rip_constants(M, 4)) #
print y
plt.clf()
plt.plot(x, y)
#plt.show()
return x, y
def compare_greedy_and_lagrange_cs284r():
"""
Compares the performance of the greedy algorithm on the
lagrangian sparse recovery objective on the Facebook dataset
for the CS284r project
"""
G = cascade_creation.InfluenceGraph(max_proba = .8)
G.import_from_file("../datasets/subset_facebook_SNAPnormalize.txt")
A = cascade_creation.generate_cascades(G, p_init=.05, n_cascades=50)
#Greedy
G_hat = algorithms.greedy_prediction(G, A)
algorithms.correctness_measure(G, G_hat, print_values=True)
#Lagrange Objective
G_hat = algorithms.recovery_l1obj_l2constraint(G, A,
passed_function=convex_optimization.l1obj_l2penalization,
floor_cstt=.1, lbda=10)
algorithms.correctness_measure(G, G_hat, print_values=True)
def test():
"""
unit test
"""
if 0:
plot_rip_numberofnodes(max_proba=.3, n_min=30, n_max=30,
p_init=.01, n_cascades=100, K_max=4)
if 1:
compare_greedy_and_lagrange_cs284r()
if __name__=="__main__":
test()
|