aboutsummaryrefslogtreecommitdiffstats
path: root/src/make_plots.py
blob: daf5ca33144c479757fb4627a0546d47d38beb11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import matplotlib.pyplot as plt
import numpy as np
import cascade_creation
import convex_optimization
import algorithms
import rip_condition


def compare_greedy_and_lagrange_cs284r():
    """
    Compares the performance of the greedy algorithm on the
    lagrangian sparse recovery objective on the Facebook dataset
    for the CS284r project
    """
    G = cascade_creation.InfluenceGraph(max_proba = .8)
    G.import_from_file("../datasets/subset_facebook_SNAPnormalize.txt")
    A = cascade_creation.generate_cascades(G, p_init=.05, n_cascades=100)

    #Greedy
    G_hat = algorithms.greedy_prediction(G, A)
    algorithms.correctness_measure(G, G_hat, print_values=True)

    #Lagrange Objective
    G_hat = algorithms.recovery_l1obj_l2constraint(G, A,
            passed_function=convex_optimization.type_lasso,
            floor_cstt=.05, lbda=10)
    algorithms.correctness_measure(G, G_hat, print_values=True)


def compute_graph(graph_name, n_cascades, lbda, passed_function):
    """
    Test running time on different algorithms
    """
    G = cascade_creation.InfluenceGraph(max_proba=.7, min_proba=.2)
    G.import_from_file(graph_name)
    A = cascade_creation.generate_cascades(G, p_init=.05, n_cascades=n_cascades)

    if passed_function==algorithms.greedy_prediction:
        G_hat = algorithms.greedy_prediction(G, A)
    else:
        G_hat = algorithms.recovery_passed_function(G, A,
                passed_function=passed_function,
                floor_cstt=.1, lbda=lbda, n_cascades=n_cascades)
    algorithms.correctness_measure(G, G_hat, print_values=True)


def plot_graph(figure_name):
    """
    plot information in a pretty way
    """
    plt.clf()
    x = [50, 100, 500, 1000, 2000, 5000]
    sparse_recov = [.25, .32, .7, .82, .89, .92]
    max_likel = [.21, .29, .67, .8, .87, .9]
    lasso = [.07, .30, .46, .65, 0, 0]
    greedy = [.09, .15, .4, .63, .82, .92]

    plt.axis((0, 5500, 0, 1))
    plt.xlabel("Number of Cascades")
    plt.ylabel("F1 score")
    plt.grid(color="lightgrey")
    plt.plot(x, greedy, 'ko-', color="lightseagreen", label='Greedy')
    plt.plot(x, lasso, 'ko-', color="orange", label="Lasso")
    plt.plot(x, max_likel, 'ko-', color="coral", label="MLE")
    plt.plot(x, sparse_recov, 'ko-', color="k", label="Sparse MLE")
    plt.legend(loc="lower right")
    plt.savefig("../paper/figures/"+figure_name)


if __name__=="__main__":
    if 0:
        compute_graph("../datasets/watts_strogatz_300_30_point3.txt",
                    n_cascades=5000, lbda=.002, passed_function=
                    #convex_optimization.sparse_recovery)
                    #algorithms.greedy_prediction)
                    convex_optimization.type_lasso)
    if 1:
        compute_graph("../datasets/powerlaw_200_30_point3.txt",
            n_cascades=300, lbda=.002, passed_function=
            convex_optimization.sparse_recovery)
            #algorithms.greedy_prediction)
            #convex_optimization.type_lasso)