summaryrefslogtreecommitdiffstats
path: root/R Scripts/predict-victims-plots.R
diff options
context:
space:
mode:
authorBen Green <bgreen@g.harvard.edu>2015-09-14 23:19:34 -0400
committerBen Green <bgreen@g.harvard.edu>2015-09-14 23:19:37 -0400
commit58faa01748fe0e6f6d040d1296266d17bd7a3543 (patch)
treeb1a2bf0709ec3d4c252d90c4dba8e42b3057c91b /R Scripts/predict-victims-plots.R
parentab0b1f3cefedb35327a19ec1b6afd560bfdf802d (diff)
downloadcriminal_cascades-58faa01748fe0e6f6d040d1296266d17bd7a3543.tar.gz
prediction and plotting cascades
Diffstat (limited to 'R Scripts/predict-victims-plots.R')
-rw-r--r--R Scripts/predict-victims-plots.R35
1 files changed, 17 insertions, 18 deletions
diff --git a/R Scripts/predict-victims-plots.R b/R Scripts/predict-victims-plots.R
index 0655d28..dee3cdc 100644
--- a/R Scripts/predict-victims-plots.R
+++ b/R Scripts/predict-victims-plots.R
@@ -1,27 +1,32 @@
##### Plot results
+# load('Results/correct_rank_91415.RData')
+nvics = dim(correct_rank)[1]
correct_rank1 = correct_rank[,length(lambdas)] # demographics model
correct_rank2 = correct_rank[,1] # cascade model
correct_rank3 = correct_rank[,which.min(colMeans(correct_rank))] # best combined model
-counts = matrix(c( sum(correct_rank1<(vcount(lcc)*0.0005)),
- sum(correct_rank1<(vcount(lcc)*0.001)),
- sum(correct_rank1<(vcount(lcc)*0.01)),
- sum(correct_rank2<(vcount(lcc)*0.0005)),
- sum(correct_rank2<(vcount(lcc)*0.001)),
- sum(correct_rank2<(vcount(lcc)*0.01)),
- sum(correct_rank3<(vcount(lcc)*0.0005)),
- sum(correct_rank3<(vcount(lcc)*0.001)),
- sum(correct_rank3<(vcount(lcc)*0.01))),
+popsizes = c(0.1,0.5,1.0)/100
+vcount(lcc)*popsizes
+counts = matrix(c( sum(correct_rank1<(vcount(lcc)*popsizes[1])),
+ sum(correct_rank1<(vcount(lcc)*popsizes[2])),
+ sum(correct_rank1<(vcount(lcc)*popsizes[3])),
+ sum(correct_rank2<(vcount(lcc)*popsizes[1])),
+ sum(correct_rank2<(vcount(lcc)*popsizes[2])),
+ sum(correct_rank2<(vcount(lcc)*popsizes[3])),
+ sum(correct_rank3<(vcount(lcc)*popsizes[1])),
+ sum(correct_rank3<(vcount(lcc)*popsizes[2])),
+ sum(correct_rank3<(vcount(lcc)*popsizes[3]))),
nrow=3, byrow=T)
counts = counts*100/nvics
barplot(counts,
xlab="Size of High-Risk Population",
ylab="Percent of Victims Predicted",
- names.arg=c('0.1%','0.5%','1%'),ylim=c(0,max(counts)*1.1),
+ names.arg=paste(as.character(popsizes*100),'%',sep=''),
+ ylim=c(0,max(counts)*1.1),
col=c(rgb(0,0,1,1/2),rgb(1,0,0,1/2),rgb(0,1,0,1/2)),
beside=TRUE)
legend("topleft", inset=0.05,
- c("Demographics (Logit)", "Cascades (Sum parent)", "Combined Model"),
+ c("Demographics", "Cascades", "Combined Model"),
fill=c(rgb(0,0,1,1/2),rgb(1,0,0,1/2),rgb(0,1,0,1/2)))
box(which='plot')
@@ -34,18 +39,12 @@ barplot(counts,
axis(side = 4)
mtext(side = 4, line = 3, "Number of Victims Predicted")
-popsizes = c(0.1, 0.5, 1)
-plot(popsizes,counts[1,],type='l',ylim=c(0,max(counts)))
-lines(popsizes,counts[2,])
-lines(popsizes,counts[3,])
-lines(c(0,1),c(0,1))
#### Precision-Recall Curve
-plot(ecdf(correct_rank1),col='red',xlim=c(0,50),lwd=2)
+plot(ecdf(correct_rank1),col='red',lwd=2,xlim=c(1,100))
plot(ecdf(correct_rank2),col='darkblue',lwd=2,add=T)
plot(ecdf(correct_rank3),col='darkgreen',lwd=2,add=T)
legend("bottomright", inset=0.05,
c("Demographics Model", "Cascade Model", "Combined Model"),
fill=c('red','darkblue','darkgreen'))
-lines(c(0,vcount(lcc)),c(0,1))