summaryrefslogtreecommitdiffstats
path: root/R Scripts/predict-victims-plots.R
diff options
context:
space:
mode:
authorBen Green <bgreen@g.harvard.edu>2015-09-16 12:56:17 -0400
committerBen Green <bgreen@g.harvard.edu>2015-09-16 12:56:19 -0400
commit8fadc0e29d96b4394a787e730c732ba21252147a (patch)
tree267bbe3a499afd5de501fbe3ad0aefa2f9e990a0 /R Scripts/predict-victims-plots.R
parent0ed0af6356b6ca962725d7a8bc4a07aad2daf437 (diff)
downloadcriminal_cascades-8fadc0e29d96b4394a787e730c732ba21252147a.tar.gz
updated prediction plotting scripts
Diffstat (limited to 'R Scripts/predict-victims-plots.R')
-rw-r--r--R Scripts/predict-victims-plots.R18
1 files changed, 9 insertions, 9 deletions
diff --git a/R Scripts/predict-victims-plots.R b/R Scripts/predict-victims-plots.R
index dee3cdc..3dfba60 100644
--- a/R Scripts/predict-victims-plots.R
+++ b/R Scripts/predict-victims-plots.R
@@ -4,7 +4,8 @@
nvics = dim(correct_rank)[1]
correct_rank1 = correct_rank[,length(lambdas)] # demographics model
correct_rank2 = correct_rank[,1] # cascade model
-correct_rank3 = correct_rank[,which.min(colMeans(correct_rank))] # best combined model
+lambda_opt = which.max(colMeans(correct_rank<1382))
+correct_rank3 = correct_rank[,lambda_opt] # best combined model
popsizes = c(0.1,0.5,1.0)/100
vcount(lcc)*popsizes
counts = matrix(c( sum(correct_rank1<(vcount(lcc)*popsizes[1])),
@@ -17,31 +18,30 @@ counts = matrix(c( sum(correct_rank1<(vcount(lcc)*popsizes[1])),
sum(correct_rank3<(vcount(lcc)*popsizes[2])),
sum(correct_rank3<(vcount(lcc)*popsizes[3]))),
nrow=3, byrow=T)
-counts = counts*100/nvics
barplot(counts,
xlab="Size of High-Risk Population",
- ylab="Percent of Victims Predicted",
+ ylab="Victims Predicted",
names.arg=paste(as.character(popsizes*100),'%',sep=''),
- ylim=c(0,max(counts)*1.1),
+ ylim=c(0,max(counts)*1.1),axes=F,
col=c(rgb(0,0,1,1/2),rgb(1,0,0,1/2),rgb(0,1,0,1/2)),
beside=TRUE)
+axis(2, at=pretty(counts*100/nvics)*nvics/100, lab=paste0(pretty(counts*100/nvics), "%"), las=TRUE)
legend("topleft", inset=0.05,
- c("Demographics", "Cascades", "Combined Model"),
+ c("Demographics Model", "Contagion Model", "Combined Model"),
fill=c(rgb(0,0,1,1/2),rgb(1,0,0,1/2),rgb(0,1,0,1/2)))
box(which='plot')
par(new=T)
-counts = counts/(100/nvics)
barplot(counts,
ylim=c(0,max(counts)*1.1),
col=c(rgb(0,0,1,0),rgb(1,0,0,0),rgb(0,1,0,0)),
- beside=TRUE)
-axis(side = 4)
+ beside=TRUE,axes=F)
+axis(side=4, at=pretty(counts), lab=pretty(counts))
mtext(side = 4, line = 3, "Number of Victims Predicted")
#### Precision-Recall Curve
-plot(ecdf(correct_rank1),col='red',lwd=2,xlim=c(1,100))
+plot(ecdf(correct_rank1),col='red',lwd=2,main='')
plot(ecdf(correct_rank2),col='darkblue',lwd=2,add=T)
plot(ecdf(correct_rank3),col='darkgreen',lwd=2,add=T)
legend("bottomright", inset=0.05,