summaryrefslogtreecommitdiffstats
path: root/R Scripts
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2015-07-02 22:37:45 -0700
committerThibaut Horel <thibaut.horel@gmail.com>2015-07-02 22:37:45 -0700
commit58ed50d980a1ba240bb50b27c42db0a679f00b43 (patch)
treee7f410984ead0c8b2163edbae9d95dae66a7134b /R Scripts
parent5a76e2393e4f2d89f885ea99c473da840d0cd7db (diff)
parent110069d77815a3d62e3526f18b2a34fb79beff1e (diff)
downloadcriminal_cascades-58ed50d980a1ba240bb50b27c42db0a679f00b43.tar.gz
Merge branch 'master' of github.com:Thibauth/criminal_cascades
Diffstat (limited to 'R Scripts')
-rw-r--r--R Scripts/find-parents.R15
-rw-r--r--R Scripts/generate-hyper-lcc.R (renamed from R Scripts/create-hyper-lcc.R)0
-rw-r--r--R Scripts/generate-network.R44
-rw-r--r--R Scripts/predict-victims-plots.R12
-rw-r--r--R Scripts/predict-victims.R39
5 files changed, 65 insertions, 45 deletions
diff --git a/R Scripts/find-parents.R b/R Scripts/find-parents.R
index 3ec8809..023d7ba 100644
--- a/R Scripts/find-parents.R
+++ b/R Scripts/find-parents.R
@@ -6,8 +6,8 @@
# source('criminal_cascades/R Scripts/structural.R')
##### Initialize parameters based on what ml2 found
-alpha = 0.061
-delta = 0.082
+alpha = 0.18
+delta = 0.09
##### Get weights
edges = dag_dat_test[!is.na(dag_dat_test$t2),]
@@ -21,20 +21,27 @@ weights = p/p_tilde
edges$weight = weights
##### Find most likely parents
-parents = data.frame(vic=0,Npars=0,par_rank=0)
+parents = data.frame(vic=0,Npars=0,par_rank=0,rand_rank=0)
vics = setdiff(vic_ids,seeds)
+print(length(vics))
for (u in vics){
+ if(which(vics==u) %% 500 == 0) print(which(vics==u))
u_parents = edges[edges$to==u,]
u_parents = u_parents[order(u_parents$weight,decreasing=T),]
Nparents = dim(u_parents)[1]
infector = V(g)$infector[u]
infectorID = which(u_parents$from==infector)
- parents[which(vics==u),] = c(u, Nparents, infectorID)
+ randID = sample(1:Nparents,1)
+ parents[which(vics==u),] = c(u, Nparents, infectorID, randID)
}
##### Get some summary statistics on how well
+mean(parents$par_rank==1)
median(parents$par_rank[parents$Npars>9])
median(parents$par_rank[parents$Npars>99])
+edges[edges$to==2847,]
+## baseline alg
+# for each vic, find potential parents, pick one at random
diff --git a/R Scripts/create-hyper-lcc.R b/R Scripts/generate-hyper-lcc.R
index 786b694..786b694 100644
--- a/R Scripts/create-hyper-lcc.R
+++ b/R Scripts/generate-hyper-lcc.R
diff --git a/R Scripts/generate-network.R b/R Scripts/generate-network.R
index 3b40969..db7012d 100644
--- a/R Scripts/generate-network.R
+++ b/R Scripts/generate-network.R
@@ -3,20 +3,20 @@ setwd("~/Documents/Cascade Project/")
source('criminal_cascades/R Scripts/temporal.R')
source('criminal_cascades/R Scripts/structural.R')
-alpha = 1/100
-beta = 0.02
-delta = 0.15
+alpha = 0.1
+beta = 0.25
+delta = 0.1
# lmbda = 1/10
t_max = 1000
N = 5000
g = forest.fire.game(nodes=N, fw.prob=0.3, ambs=1, directed=F)
-plot(g, vertex.size=5, vertex.label=NA)
+plot(g, vertex.size=3, vertex.label=NA)
V(g)$seed = runif(vcount(g))<beta
seeds = which(V(g)$seed)
V(g)$vic = V(g)$seed
-V(g)$vic.day[V(g)$seed] = sample(1:t_max, sum(V(g)$seed))
+V(g)$vic.day[V(g)$seed] = sample(1:t_max, sum(V(g)$seed), replace=T) #1 if testing ml2
V(g)$spawn.date = 0
V(g)$infector = NA
@@ -28,17 +28,21 @@ for (day in 1:t_max){
dists = as.numeric(shortest.paths(g,vic,neighbors))
infected = neighbors[which(runif(length(neighbors))<structural(delta, dists))]
infected = setdiff(infected,seeds) # don't try to infect seeds
- inf.days = day + ceiling(alpha*rexp(length(infected),alpha))
- V(g)$vic[infected] = TRUE
- infects = (inf.days <= V(g)$vic.day[infected]) %in% c(NA,T)
- V(g)$vic.day[infected[infects]] = inf.days[infects]
- V(g)$infector[infected[infects]] = vic
+ inf.days = day + ceiling(rexp(length(infected),alpha))
+ realized = ((inf.days <= V(g)$vic.day[infected]) %in% c(NA,T)) & (inf.days<=t_max)
+ infected = infected[realized]
+ if(sum(realized)){
+ V(g)$vic[infected] = TRUE
+ V(g)$vic.day[infected] = inf.days[realized]
+ V(g)$infector[infected] = vic
+ }
}
}
vic_ids = which(V(g)$vic)
+print(length(vic_ids))
cols = rep('lightblue',N); cols[V(g)$vic]='red'; cols[V(g)$seed]='darkred'
-plot(g, vertex.size=5, vertex.label=NA, vertex.color=cols)
+plot(g, vertex.size=3, vertex.label=NA, vertex.color=cols)
##### generate dag_dat
dag_dat_test = data.frame(matrix(nrow=1,ncol=10))
@@ -68,12 +72,12 @@ rownames(dag_dat_test) = NULL
write.csv(dag_dat_test, file='Results/dag_dat_test.csv')
-##### analyze performance of recovery algorithm
-recovered = read.csv('Results/infectors.csv',header=F,col.names=c('victim','infector'))
-recovered = recovered[order(recovered$victim),]
-infectors = cbind(setdiff(vic_ids,seeds),
- V(g)$infector[setdiff(vic_ids,seeds)],
- recovered$infector[recovered$victim %in% setdiff(vic_ids,seeds)])
-mean(infectors[,2]==infectors[,3])
-
-dag_dat_test[dag_dat_test$to==4984,] \ No newline at end of file
+##### analyze performance of recovery algorithm ------
+# recovered = read.csv('Results/infectors.csv',header=F,col.names=c('victim','infector'))
+# recovered = recovered[order(recovered$victim),]
+# infectors = cbind(setdiff(vic_ids,seeds),
+# V(g)$infector[setdiff(vic_ids,seeds)],
+# recovered$infector[recovered$victim %in% setdiff(vic_ids,seeds)])
+# mean(infectors[,2]==infectors[,3])
+#
+# dag_dat_test[dag_dat_test$to==4984,]
diff --git a/R Scripts/predict-victims-plots.R b/R Scripts/predict-victims-plots.R
index 8a93667..553aa89 100644
--- a/R Scripts/predict-victims-plots.R
+++ b/R Scripts/predict-victims-plots.R
@@ -1,8 +1,8 @@
##### Plot results
-hist(correct_rank3,150,xlim=c(0,vcount(lcc)),col=rgb(0,0,1,1/8),
+hist(correct_rank1,150,xlim=c(0,vcount(lcc)),col=rgb(0,0,1,1/8),
xlab='Risk Ranking of Victims',main='')
hist(correct_rank1,150,xlim=c(0,vcount(lcc)),col=rgb(1,0,1,1/8),add=T)
-hist(correct_rank2,150,xlim=c(0,vcount(lcc)),col=rgb(1,0,1,1/8),add=T)
+hist(correct_rank2,150,xlim=c(0,vcount(lcc)),col=rgb(0,0,1,1/8),add=T)
legend("topright", c("Demographics Model", "Cascade Model"),
fill=c(rgb(1,0,1,1/8), rgb(0,0,1,1/8)))
@@ -12,9 +12,9 @@ counts = matrix(c(colSums(correct_rank<(vcount(lcc)/1000))*100/nvics,
nrow=3, byrow=T)
plot(lambdas,counts[1,],log='x',type='l')
-correct_rank1 = correct_rank[,length(lambdas)]
-correct_rank2 = correct_rank[,1]
-correct_rank3 = correct_rank[,which.min(colMeans(correct_rank))]
+correct_rank1 = correct_rank[,length(lambdas)] # demographics model
+correct_rank2 = correct_rank[,1] # cascade model
+correct_rank3 = correct_rank[,which.min(colMeans(correct_rank))] # best combined model
counts = matrix(c(sum(correct_rank1<(vcount(lcc)*0.001)),
sum(correct_rank1<(vcount(lcc)*0.005)),
sum(correct_rank1<(vcount(lcc)*0.01)),
@@ -36,6 +36,7 @@ legend("topleft", inset=0.05,
c("Demographics Model", "Cascade Model", "Combined Model"),
fill=c(rgb(0,0,1,1/2),rgb(1,0,0,1/2),rgb(0,1,0,1/2)))
box(which='plot')
+
par(new=T)
counts = counts/(100/nvics)
barplot(counts,
@@ -59,3 +60,4 @@ legend("bottomright", inset=0.05,
c("Demographics Model", "Cascade Model", "Combined Model"),
fill=c('red','darkblue','darkgreen'))
lines(c(0,vcount(lcc)),c(0,1))
+
diff --git a/R Scripts/predict-victims.R b/R Scripts/predict-victims.R
index 470815d..2bda7e2 100644
--- a/R Scripts/predict-victims.R
+++ b/R Scripts/predict-victims.R
@@ -1,4 +1,7 @@
library(igraph)
+library(foreach)
+library(doMC)
+registerDoMC(cores=4)
setwd('~/Documents/Cascade Project')
load('Raw Data/lcc.RData')
load('Results/hyper-lcc.RData')
@@ -7,34 +10,36 @@ source('criminal_cascades/R Scripts/temporal.R')
source('criminal_cascades/R Scripts/structural.R')
##### Initialize data
-formula = vic ~ sex + race + age + gang.member + gang.name
+formula = vic ~ sex + race + age + gang.member #+ gang.name
lcc_verts$sex = as.factor(lcc_verts$sex)
lcc_verts$race = as.factor(lcc_verts$race)
lcc_verts$age = as.numeric(lcc_verts$age)
lcc_verts$gang.name = as.factor(lcc_verts$gang.name)
# sum(hyp_lcc_verts$vic)/length(days)
+df = data.frame(ir=lcc_verts$ir_no, dem=0, cas=0, comb=0)
alpha = 0.0028
delta = 0.06
days = sort(unique(hyp_lcc_verts$vic.day)) # 70:max(hyp_lcc_verts$vic.day, na.rm=T)
lambdas = c(0,1)#c(0, exp(seq(log(0.0000001), log(.0005), length.out=150)), 1)
-nvics = sum(lcc_verts$vic)#sum(hyp_lcc_verts$vic.day %in% days)
-correct_rank = matrix(nrow=nvics, ncol=length(lambdas))
+nvics = sum(hyp_lcc_verts$vic.day %in% days)
edges_all = dag_dat_all
##### Loop through days
+writeLines(c(""), "Results/log.txt")
ptm = proc.time()
-for (day in days){
- if (which(day==days) %% 100 == 0) print(day)
-
+correct_rank = foreach (day = days, .combine=rbind) %dopar% {
+ if (which(day==days) %% 100 == 0){sink("Results/log.txt", append=TRUE);cat(paste("day:",day,"\n"))}
+
##### Demographics model
vics = match(unique(hyp_lcc_verts$ir_no[which(hyp_lcc_verts$vic.day<day)]),lcc_verts$name)
victims = lcc_verts[,c('vic','sex','race','age','gang.member','gang.name')]
victims$vic[vics] = TRUE
victims$vic[-vics] = FALSE
-# glm.fit = glm(formula, data=victims, family=binomial)
- glm.fit = lm(formula, data=victims)
- glm.probs = predict(glm.fit, newdata=lcc_verts, type='response')
+ fit = lm(formula, data=victims)
+# fit = glm(formula, data=victims, family=binomial)
+# fit = randomForest(formula, data=victims[,1:5], ntree=100)
+ probs = predict(fit, newdata=lcc_verts, type='response')
##### Cascade Model
edges = edges_all[which(edges_all$t1<day),]
@@ -49,19 +54,21 @@ for (day in days){
# maybe need to change this to reflect new algorithm that accounts for \tilde{p}
##### Combined Model
- combined = data.frame(ir=attr(glm.probs,'name'), dem=as.numeric(glm.probs), cas=0, comb=0)
- combined$cas[match(risk$ir, attr(glm.probs,'name'))] = risk$weight
+ combined = df#data.frame(ir=attr(probs,'name'), dem=as.numeric(probs), cas=0, comb=0)
+ combined$dem[match(attr(probs,'name'), df$ir)] = as.numeric(probs)
+ combined$cas[match(risk$ir, attr(probs,'name'))] = risk$weight
##### Gather results
infected_irs = hyp_lcc_verts$ir_no[which(hyp_lcc_verts$vic.day==day)]
+ crday = matrix(nrow=length(infected_irs), ncol=length(lambdas))
for (lambda in lambdas){
combined$comb = lambda*combined$dem + (1-lambda)*combined$cas
c_idx = which(lambdas==lambda)
- r_idx = head(which(is.na(correct_rank[,c_idx])),length(infected_irs))
- # !! order should be first: rank of (3,5,5,7) should be (1,2,2,4), may need to do n-rank
- correct_rank[r_idx,c_idx] = match(infected_irs, combined$ir[order(combined$comb, decreasing=T)])
- # maybe should also mark down vic/nonvic status of each?
+ crday[,c_idx] = rank(-combined$comb,ties.method='average')[match(infected_irs,combined$ir)]
}
-
+
+ return(crday)
}
print(proc.time()-ptm)
+
+# save(correct_rank, file='Results/correct_rank_62815.RData') \ No newline at end of file