diff options
| author | Ben Green <ben@SEASITs-MacBook-Pro.local> | 2015-06-22 13:38:12 -0400 |
|---|---|---|
| committer | Ben Green <ben@SEASITs-MacBook-Pro.local> | 2015-06-22 13:38:12 -0400 |
| commit | d99879dc3d6839b00f4b325320fe2b992391b915 (patch) | |
| tree | 570597ea2e30d986c0cd891b8a87620ebb6d85e3 /experiments/ml.c | |
| parent | b26412ed5a3e08e9dc32fc73c27c42be54d82aa8 (diff) | |
| download | criminal_cascades-d99879dc3d6839b00f4b325320fe2b992391b915.tar.gz | |
Added ml3, where we don’t consider edges from victims to non-victims.
Also playing around with only allowing most likely parent to try and
infect. Still working to see if some variant produces good results that
allow us to determine seeds/non-seeds.
Diffstat (limited to 'experiments/ml.c')
| -rw-r--r-- | experiments/ml.c | 192 |
1 files changed, 82 insertions, 110 deletions
diff --git a/experiments/ml.c b/experiments/ml.c index 64d4e3a..77f9840 100644 --- a/experiments/ml.c +++ b/experiments/ml.c @@ -1252,8 +1252,8 @@ int __pyx_module_is_main_ml = 0; /* Implementation of 'ml' */ static PyObject *__pyx_builtin_enumerate; -static PyObject *__pyx_builtin_sum; static PyObject *__pyx_builtin_max; +static PyObject *__pyx_builtin_sum; static PyObject *__pyx_builtin_ValueError; static PyObject *__pyx_builtin_range; static PyObject *__pyx_builtin_RuntimeError; @@ -1404,9 +1404,9 @@ static PyObject *__pyx_n_s_w1; static PyObject *__pyx_n_s_w2; static PyObject *__pyx_n_s_w3; static PyObject *__pyx_n_s_zeros; -static PyObject *__pyx_float__2; -static PyObject *__pyx_float__002; -static PyObject *__pyx_float_0_001; +static PyObject *__pyx_float_1_; +static PyObject *__pyx_float__05; +static PyObject *__pyx_float_0_09; static PyObject *__pyx_tuple_; static PyObject *__pyx_tuple__2; static PyObject *__pyx_tuple__3; @@ -1842,7 +1842,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ struct __pyx_obj_2ml___pyx_scope_struct__ml *__pyx_cur_scope; int __pyx_v_n_roots; int __pyx_v_n_victims; - int __pyx_v_n_nodes; + CYTHON_UNUSED int __pyx_v_n_nodes; int __pyx_v_roots; int __pyx_v_i; int __pyx_v_dist; @@ -2121,7 +2121,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ * # likely parent infects it * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) # <<<<<<<<<<<<<< * for (dist, dt, w1, w2, w3) in parents] - * probs_fail[i] = sum(failures) + * probs_fail[i] = max(failures) */ __pyx_t_4 = PyList_New(0); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 56; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); @@ -2130,7 +2130,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ * # likely parent infects it * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<< - * probs_fail[i] = sum(failures) + * probs_fail[i] = max(failures) * successes = [weight_success(dist, dt, alpha, delta, w1, w2, w3) */ if (unlikely(__pyx_v_parents == Py_None)) { @@ -2229,7 +2229,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ * # likely parent infects it * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) # <<<<<<<<<<<<<< * for (dist, dt, w1, w2, w3) in parents] - * probs_fail[i] = sum(failures) + * probs_fail[i] = max(failures) */ __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_v_w1); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 56; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_t_23 = __pyx_PyFloat_AsDouble(__pyx_v_w2); if (unlikely((__pyx_t_23 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 56; __pyx_clineno = __LINE__; goto __pyx_L1_error;} @@ -2243,7 +2243,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ * # likely parent infects it * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<< - * probs_fail[i] = sum(failures) + * probs_fail[i] = max(failures) * successes = [weight_success(dist, dt, alpha, delta, w1, w2, w3) */ } @@ -2256,7 +2256,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ /* "ml.pyx":58 * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) * for (dist, dt, w1, w2, w3) in parents] - * probs_fail[i] = sum(failures) # <<<<<<<<<<<<<< + * probs_fail[i] = max(failures) # <<<<<<<<<<<<<< * successes = [weight_success(dist, dt, alpha, delta, w1, w2, w3) * for (dist, dt, w1, w2, w3) in parents] */ @@ -2265,7 +2265,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __Pyx_INCREF(__pyx_cur_scope->__pyx_v_failures); PyTuple_SET_ITEM(__pyx_t_4, 0, __pyx_cur_scope->__pyx_v_failures); __Pyx_GIVEREF(__pyx_cur_scope->__pyx_v_failures); - __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_sum, __pyx_t_4, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 58; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = __Pyx_PyObject_Call(__pyx_builtin_max, __pyx_t_4, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 58; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 58; __pyx_clineno = __LINE__; goto __pyx_L1_error;} @@ -2276,7 +2276,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ /* "ml.pyx":59 * for (dist, dt, w1, w2, w3) in parents] - * probs_fail[i] = sum(failures) + * probs_fail[i] = max(failures) * successes = [weight_success(dist, dt, alpha, delta, w1, w2, w3) # <<<<<<<<<<<<<< * for (dist, dt, w1, w2, w3) in parents] * # find parent that maximizes log(p) - log(\tilde{p}) @@ -2285,7 +2285,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __Pyx_GOTREF(__pyx_t_5); /* "ml.pyx":60 - * probs_fail[i] = sum(failures) + * probs_fail[i] = max(failures) * successes = [weight_success(dist, dt, alpha, delta, w1, w2, w3) * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<< * # find parent that maximizes log(p) - log(\tilde{p}) @@ -2384,7 +2384,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ /* "ml.pyx":59 * for (dist, dt, w1, w2, w3) in parents] - * probs_fail[i] = sum(failures) + * probs_fail[i] = max(failures) * successes = [weight_success(dist, dt, alpha, delta, w1, w2, w3) # <<<<<<<<<<<<<< * for (dist, dt, w1, w2, w3) in parents] * # find parent that maximizes log(p) - log(\tilde{p}) @@ -2398,7 +2398,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; /* "ml.pyx":60 - * probs_fail[i] = sum(failures) + * probs_fail[i] = max(failures) * successes = [weight_success(dist, dt, alpha, delta, w1, w2, w3) * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<< * # find parent that maximizes log(p) - log(\tilde{p}) @@ -2629,7 +2629,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ * # cdef: * # np.ndarray[DTYPE_t] cums = probs.cumsum() * ll = probs_fail.sum() # add probability that all edges to victims fail # <<<<<<<<<<<<<< - * ll += probs_nv.sum() # add probability that all edges to non_victims fail + * # ll += probs_nv.sum() # add probability that all edges to non_victims fail * */ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_fail), __pyx_n_s_sum); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;} @@ -2656,49 +2656,12 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_ll = __pyx_t_24; - /* "ml.pyx":81 - * # np.ndarray[DTYPE_t] cums = probs.cumsum() - * ll = probs_fail.sum() # add probability that all edges to victims fail - * ll += probs_nv.sum() # add probability that all edges to non_victims fail # <<<<<<<<<<<<<< - * - * # print 'probs', probs - */ - __pyx_t_3 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_5 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_nv), __pyx_n_s_sum); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - __pyx_t_6 = NULL; - if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_5))) { - __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_5); - if (likely(__pyx_t_6)) { - PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5); - __Pyx_INCREF(__pyx_t_6); - __Pyx_INCREF(function); - __Pyx_DECREF_SET(__pyx_t_5, function); - } - } - if (__pyx_t_6) { - __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_6); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; - } else { - __pyx_t_4 = __Pyx_PyObject_CallNoArg(__pyx_t_5); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - } - __Pyx_GOTREF(__pyx_t_4); - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_5 = PyNumber_InPlaceAdd(__pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_v_ll = __pyx_t_24; - /* "ml.pyx":84 * * # print 'probs', probs * max_beta_add = float('-inf') # <<<<<<<<<<<<<< * # iterate over all victim nodes to find the optimal threshold - * for beta in np.arange(0.001, .2, .002): + * for beta in np.arange(0.09, 1., .05): */ __pyx_t_27 = __Pyx_PyObject_AsDouble(__pyx_kp_s_inf); if (unlikely(__pyx_t_27 == ((double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_v_max_beta_add = __pyx_t_27; @@ -2706,47 +2669,47 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ /* "ml.pyx":86 * max_beta_add = float('-inf') * # iterate over all victim nodes to find the optimal threshold - * for beta in np.arange(0.001, .2, .002): # <<<<<<<<<<<<<< + * for beta in np.arange(0.09, 1., .05): # <<<<<<<<<<<<<< * thresh = log(beta/(3012.*(1.-beta))) * # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh]) */ - __pyx_t_5 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_5, __pyx_n_s_arange); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_4 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_arange); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_5 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_tuple_, NULL); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __pyx_t_3 = __Pyx_PyObject_Call(__pyx_t_4, __pyx_tuple_, NULL); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0; - if (likely(PyList_CheckExact(__pyx_t_5)) || PyTuple_CheckExact(__pyx_t_5)) { - __pyx_t_4 = __pyx_t_5; __Pyx_INCREF(__pyx_t_4); __pyx_t_2 = 0; + if (likely(PyList_CheckExact(__pyx_t_3)) || PyTuple_CheckExact(__pyx_t_3)) { + __pyx_t_4 = __pyx_t_3; __Pyx_INCREF(__pyx_t_4); __pyx_t_2 = 0; __pyx_t_28 = NULL; } else { - __pyx_t_2 = -1; __pyx_t_4 = PyObject_GetIter(__pyx_t_5); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_2 = -1; __pyx_t_4 = PyObject_GetIter(__pyx_t_3); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_4); __pyx_t_28 = Py_TYPE(__pyx_t_4)->tp_iternext; if (unlikely(!__pyx_t_28)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; for (;;) { if (likely(!__pyx_t_28)) { if (likely(PyList_CheckExact(__pyx_t_4))) { if (__pyx_t_2 >= PyList_GET_SIZE(__pyx_t_4)) break; #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_5 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_2); __Pyx_INCREF(__pyx_t_5); __pyx_t_2++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_2); __Pyx_INCREF(__pyx_t_3); __pyx_t_2++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #else - __pyx_t_5 = PySequence_ITEM(__pyx_t_4, __pyx_t_2); __pyx_t_2++; if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = PySequence_ITEM(__pyx_t_4, __pyx_t_2); __pyx_t_2++; if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #endif } else { if (__pyx_t_2 >= PyTuple_GET_SIZE(__pyx_t_4)) break; #if CYTHON_COMPILING_IN_CPYTHON - __pyx_t_5 = PyTuple_GET_ITEM(__pyx_t_4, __pyx_t_2); __Pyx_INCREF(__pyx_t_5); __pyx_t_2++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = PyTuple_GET_ITEM(__pyx_t_4, __pyx_t_2); __Pyx_INCREF(__pyx_t_3); __pyx_t_2++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #else - __pyx_t_5 = PySequence_ITEM(__pyx_t_4, __pyx_t_2); __pyx_t_2++; if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = PySequence_ITEM(__pyx_t_4, __pyx_t_2); __pyx_t_2++; if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} #endif } } else { - __pyx_t_5 = __pyx_t_28(__pyx_t_4); - if (unlikely(!__pyx_t_5)) { + __pyx_t_3 = __pyx_t_28(__pyx_t_4); + if (unlikely(!__pyx_t_3)) { PyObject* exc_type = PyErr_Occurred(); if (exc_type) { if (likely(exc_type == PyExc_StopIteration || PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear(); @@ -2754,15 +2717,15 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ } break; } - __Pyx_GOTREF(__pyx_t_5); + __Pyx_GOTREF(__pyx_t_3); } - __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_beta = __pyx_t_24; /* "ml.pyx":87 * # iterate over all victim nodes to find the optimal threshold - * for beta in np.arange(0.001, .2, .002): + * for beta in np.arange(0.09, 1., .05): * thresh = log(beta/(3012.*(1.-beta))) # <<<<<<<<<<<<<< * # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh]) * roots = n_roots + len(probs[probs<thresh]) @@ -2776,15 +2739,15 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ * * beta_add = 0. */ - __pyx_t_5 = PyFloat_FromDouble(__pyx_v_thresh); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); - __pyx_t_3 = PyObject_RichCompare(((PyObject *)__pyx_v_probs), __pyx_t_5, Py_LT); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; - __pyx_t_5 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_t_3); if (unlikely(__pyx_t_5 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; - __Pyx_GOTREF(__pyx_t_5); + __pyx_t_3 = PyFloat_FromDouble(__pyx_v_thresh); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_3); + __pyx_t_5 = PyObject_RichCompare(((PyObject *)__pyx_v_probs), __pyx_t_3, Py_LT); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; - __pyx_t_1 = PyObject_Length(__pyx_t_5); if (unlikely(__pyx_t_1 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_3 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_t_5); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; + __Pyx_GOTREF(__pyx_t_3); __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_1 = PyObject_Length(__pyx_t_3); if (unlikely(__pyx_t_1 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; __pyx_v_roots = (__pyx_v_n_roots + __pyx_t_1); /* "ml.pyx":91 @@ -2801,10 +2764,10 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ * # add probability for realized edges and subtract probability these edges fail * beta_add += (probs[probs>=thresh]).sum() # <<<<<<<<<<<<<< * # add probability for the seeds and non-seeds - * beta_add += roots * log(beta) + (n_nodes-roots) * log(1. - beta) + * beta_add += roots * log(beta) + len(probs[probs>=thresh]) * log(1. - beta) */ - __pyx_t_5 = PyFloat_FromDouble(__pyx_v_beta_add); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 93; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_5); + __pyx_t_3 = PyFloat_FromDouble(__pyx_v_beta_add); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 93; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_3); __pyx_t_6 = PyFloat_FromDouble(__pyx_v_thresh); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 93; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_6); __pyx_t_18 = PyObject_RichCompare(((PyObject *)__pyx_v_probs), __pyx_t_6, Py_GE); __Pyx_XGOTREF(__pyx_t_18); if (unlikely(!__pyx_t_18)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 93; __pyx_clineno = __LINE__; goto __pyx_L1_error;} @@ -2826,17 +2789,17 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ } } if (__pyx_t_6) { - __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_18, __pyx_t_6); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 93; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = __Pyx_PyObject_CallOneArg(__pyx_t_18, __pyx_t_6); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 93; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0; } else { - __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_18); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 93; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = __Pyx_PyObject_CallNoArg(__pyx_t_18); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 93; __pyx_clineno = __LINE__; goto __pyx_L1_error;} } - __Pyx_GOTREF(__pyx_t_3); + __Pyx_GOTREF(__pyx_t_5); __Pyx_DECREF(__pyx_t_18); __pyx_t_18 = 0; - __pyx_t_18 = PyNumber_InPlaceAdd(__pyx_t_5, __pyx_t_3); if (unlikely(!__pyx_t_18)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 93; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_18 = PyNumber_InPlaceAdd(__pyx_t_3, __pyx_t_5); if (unlikely(!__pyx_t_18)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 93; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_18); - __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0; + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_18); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 93; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_DECREF(__pyx_t_18); __pyx_t_18 = 0; __pyx_v_beta_add = __pyx_t_24; @@ -2844,14 +2807,23 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ /* "ml.pyx":95 * beta_add += (probs[probs>=thresh]).sum() * # add probability for the seeds and non-seeds - * beta_add += roots * log(beta) + (n_nodes-roots) * log(1. - beta) # <<<<<<<<<<<<<< + * beta_add += roots * log(beta) + len(probs[probs>=thresh]) * log(1. - beta) # <<<<<<<<<<<<<< * * if beta_add > max_beta_add: */ - __pyx_v_beta_add = (__pyx_v_beta_add + ((__pyx_v_roots * log(__pyx_v_beta)) + ((__pyx_v_n_nodes - __pyx_v_roots) * log((1. - __pyx_v_beta))))); + __pyx_t_18 = PyFloat_FromDouble(__pyx_v_thresh); if (unlikely(!__pyx_t_18)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 95; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_18); + __pyx_t_5 = PyObject_RichCompare(((PyObject *)__pyx_v_probs), __pyx_t_18, Py_GE); __Pyx_XGOTREF(__pyx_t_5); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 95; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_18); __pyx_t_18 = 0; + __pyx_t_18 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_t_5); if (unlikely(__pyx_t_18 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 95; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; + __Pyx_GOTREF(__pyx_t_18); + __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0; + __pyx_t_1 = PyObject_Length(__pyx_t_18); if (unlikely(__pyx_t_1 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 95; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_DECREF(__pyx_t_18); __pyx_t_18 = 0; + __pyx_v_beta_add = (__pyx_v_beta_add + ((__pyx_v_roots * log(__pyx_v_beta)) + (__pyx_t_1 * log((1. - __pyx_v_beta))))); /* "ml.pyx":97 - * beta_add += roots * log(beta) + (n_nodes-roots) * log(1. - beta) + * beta_add += roots * log(beta) + len(probs[probs>=thresh]) * log(1. - beta) * * if beta_add > max_beta_add: # <<<<<<<<<<<<<< * max_beta = beta @@ -2893,7 +2865,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ /* "ml.pyx":86 * max_beta_add = float('-inf') * # iterate over all victim nodes to find the optimal threshold - * for beta in np.arange(0.001, .2, .002): # <<<<<<<<<<<<<< + * for beta in np.arange(0.09, 1., .05): # <<<<<<<<<<<<<< * thresh = log(beta/(3012.*(1.-beta))) * # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh]) */ @@ -2937,21 +2909,21 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_ __Pyx_GOTREF(__pyx_t_4); __pyx_t_18 = __Pyx_PyInt_From_int(__pyx_v_roots); if (unlikely(!__pyx_t_18)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 107; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_18); - __pyx_t_3 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 107; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __Pyx_GOTREF(__pyx_t_3); - __pyx_t_5 = PyTuple_New(3); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 107; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_t_5 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 107; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_t_5); - PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_t_4); + __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 107; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __Pyx_GOTREF(__pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_4); __Pyx_GIVEREF(__pyx_t_4); - PyTuple_SET_ITEM(__pyx_t_5, 1, __pyx_t_18); + PyTuple_SET_ITEM(__pyx_t_3, 1, __pyx_t_18); __Pyx_GIVEREF(__pyx_t_18); - PyTuple_SET_ITEM(__pyx_t_5, 2, __pyx_t_3); - __Pyx_GIVEREF(__pyx_t_3); + PyTuple_SET_ITEM(__pyx_t_3, 2, __pyx_t_5); + __Pyx_GIVEREF(__pyx_t_5); __pyx_t_4 = 0; __pyx_t_18 = 0; - __pyx_t_3 = 0; - __pyx_r = __pyx_t_5; __pyx_t_5 = 0; + __pyx_r = __pyx_t_3; + __pyx_t_3 = 0; goto __pyx_L0; /* "ml.pyx":38 @@ -5320,8 +5292,8 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = { }; static int __Pyx_InitCachedBuiltins(void) { __pyx_builtin_enumerate = __Pyx_GetBuiltinName(__pyx_n_s_enumerate); if (!__pyx_builtin_enumerate) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 52; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_builtin_sum = __Pyx_GetBuiltinName(__pyx_n_s_sum); if (!__pyx_builtin_sum) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 58; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_builtin_max = __Pyx_GetBuiltinName(__pyx_n_s_max); if (!__pyx_builtin_max) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 62; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_builtin_max = __Pyx_GetBuiltinName(__pyx_n_s_max); if (!__pyx_builtin_max) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 58; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_builtin_sum = __Pyx_GetBuiltinName(__pyx_n_s_sum); if (!__pyx_builtin_sum) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_builtin_ValueError = __Pyx_GetBuiltinName(__pyx_n_s_ValueError); if (!__pyx_builtin_ValueError) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 218; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_builtin_range = __Pyx_GetBuiltinName(__pyx_n_s_range); if (!__pyx_builtin_range) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 231; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __pyx_builtin_RuntimeError = __Pyx_GetBuiltinName(__pyx_n_s_RuntimeError); if (!__pyx_builtin_RuntimeError) {__pyx_filename = __pyx_f[1]; __pyx_lineno = 802; __pyx_clineno = __LINE__; goto __pyx_L1_error;} @@ -5337,11 +5309,11 @@ static int __Pyx_InitCachedConstants(void) { /* "ml.pyx":86 * max_beta_add = float('-inf') * # iterate over all victim nodes to find the optimal threshold - * for beta in np.arange(0.001, .2, .002): # <<<<<<<<<<<<<< + * for beta in np.arange(0.09, 1., .05): # <<<<<<<<<<<<<< * thresh = log(beta/(3012.*(1.-beta))) * # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh]) */ - __pyx_tuple_ = PyTuple_Pack(3, __pyx_float_0_001, __pyx_float__2, __pyx_float__002); if (unlikely(!__pyx_tuple_)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_tuple_ = PyTuple_Pack(3, __pyx_float_0_09, __pyx_float_1_, __pyx_float__05); if (unlikely(!__pyx_tuple_)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;} __Pyx_GOTREF(__pyx_tuple_); __Pyx_GIVEREF(__pyx_tuple_); @@ -5431,9 +5403,9 @@ static int __Pyx_InitCachedConstants(void) { static int __Pyx_InitGlobals(void) { if (__Pyx_InitStrings(__pyx_string_tab) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}; - __pyx_float__2 = PyFloat_FromDouble(.2); if (unlikely(!__pyx_float__2)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_float__002 = PyFloat_FromDouble(.002); if (unlikely(!__pyx_float__002)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} - __pyx_float_0_001 = PyFloat_FromDouble(0.001); if (unlikely(!__pyx_float_0_001)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_float_1_ = PyFloat_FromDouble(1.); if (unlikely(!__pyx_float_1_)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_float__05 = PyFloat_FromDouble(.05); if (unlikely(!__pyx_float__05)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} + __pyx_float_0_09 = PyFloat_FromDouble(0.09); if (unlikely(!__pyx_float_0_09)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;} return 0; __pyx_L1_error:; return -1; |
