summaryrefslogtreecommitdiffstats
path: root/experiments/ml.pyx
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2015-07-02 22:37:45 -0700
committerThibaut Horel <thibaut.horel@gmail.com>2015-07-02 22:37:45 -0700
commit58ed50d980a1ba240bb50b27c42db0a679f00b43 (patch)
treee7f410984ead0c8b2163edbae9d95dae66a7134b /experiments/ml.pyx
parent5a76e2393e4f2d89f885ea99c473da840d0cd7db (diff)
parent110069d77815a3d62e3526f18b2a34fb79beff1e (diff)
downloadcriminal_cascades-58ed50d980a1ba240bb50b27c42db0a679f00b43.tar.gz
Merge branch 'master' of github.com:Thibauth/criminal_cascades
Diffstat (limited to 'experiments/ml.pyx')
-rw-r--r--experiments/ml.pyx63
1 files changed, 30 insertions, 33 deletions
diff --git a/experiments/ml.pyx b/experiments/ml.pyx
index c8c99cc..0d72c44 100644
--- a/experiments/ml.pyx
+++ b/experiments/ml.pyx
@@ -10,14 +10,9 @@ cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
DTYPE_t w1, DTYPE_t w2, DTYPE_t w3):
"""weight for successful infection, exponential time model"""
cdef DTYPE_t structural, temporal, result
- structural = dist * log(delta)
- # structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta)
- temporal = log(exp(alpha)-1.) - alpha*dt
- # temporal = 1 - exp(-alpha*dt)
- # if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR'
- # temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01
- result = structural + temporal
- # print 'st', structural, temporal
+ structural = delta ** dist
+ temporal = log(exp(alpha)-1.) - alpha*dt/1.
+ result = log(structural) + temporal
return result
cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
@@ -25,24 +20,23 @@ cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
"""weight for failed infection, exponential time model"""
cdef DTYPE_t structural, temporal, result
structural = delta ** dist
- # structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta)
- temporal = exp(-alpha * dt)
- # temporal = 1. - 1. / (1. + dt/alpha)**0.01
+ temporal = exp(-alpha * dt/1.)
result = log(1. - structural + structural * temporal)
- # print 'stnv', structural, temporal
return result
def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
DTYPE_t alpha, DTYPE_t delta):
cdef:
- int n_roots, n_victims, n_nodes, roots, i, dist, dt, t, l
+ int n_roots, n_victims, roots, i, dist, dt, t, l
DTYPE_t beta, ll, beta_add, max_beta, max_beta_add
list parents, failures, successes
n_roots, n_victims = len(root_victims), len(victims)
- n_nodes = 148152
+ n_nodes = 5000
cdef:
np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE)
np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE)
+ np.ndarray[DTYPE_t] parent_dists = np.zeros(n_victims, dtype=DTYPE)
+ np.ndarray[DTYPE_t] parent_dts = np.zeros(n_victims, dtype=DTYPE)
np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE)
# loop through victims
@@ -51,45 +45,48 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
# fail to infect it, also computes the probability that its most
# likely parent infects it
failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3)
- for (dist, dt, w1, w2, w3) in parents]
+ for (prnt, dist, dt, w1, w2, w3) in parents]
probs_fail[i] = sum(failures)
successes = [weight_success(dist, dt, alpha, delta, w1, w2, w3)
- for (dist, dt, w1, w2, w3) in parents]
+ for (prnt, dist, dt, w1, w2, w3) in parents]
+ dists = [dist for (prnt, dist, dt, w1, w2, w3) in parents]
+ dts = [dt for (prnt, dist, dt, w1, w2, w3) in parents]
# find parent that maximizes log(p) - log(\tilde{p})
- probs[i] = max(s - failures[l] for l, s in enumerate(successes))
+ # probs[i] = max(s - failures[l] for l, s in enumerate(successes))
+ probs[i] = float("-inf")
+ for l, s in enumerate(successes):
+ prob = s - failures[l]
+ if prob > probs[i]:
+ probs[i] = prob
+ parent_dists[i] = dists[l]
+ parent_dts[i] = dts[l]
+ # probs_fail[i] = failures[l]
# loop through non-victims
for i, parents in enumerate(non_victims.itervalues()):
# for each non victim node, compute the probability that all its
# parents fail to infect it
failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3)
- for (dist, dt, w1, w2, w3) in parents]
+ for (prnt, dist, dt, w1, w2, w3) in parents]
probs_nv[i] = sum(failures)
- # print successes
- # print failures
- # print probs
-
# calculate log likelihood
- # probs.sort(); probs = probs[::-1] # sort probs in descending order
- # cdef:
- # np.ndarray[DTYPE_t] cums = probs.cumsum()
- ll = probs_fail.sum() # add probability that all edges to victims fail
+ ll = probs_fail.sum() # add probability that all edges to all victims fail
ll += probs_nv.sum() # add probability that all edges to non_victims fail
- # print 'probs', probs
max_beta_add = float('-inf')
# iterate over all victim nodes to find the optimal threshold
- for beta in np.arange(0.001, .2, .002):
- thresh = log(beta/(3012.*(1.-beta)))
- # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh])
- roots = n_roots + len(probs[probs<thresh])
+ for beta in np.arange(0.01, 1., .01):
+ thresh = log(beta/(1000.*(1.-beta)))
+ seeds = probs<thresh
+ non_seeds = probs>=thresh
+ roots = n_roots + sum(seeds)
beta_add = 0.
# add probability for realized edges and subtract probability these edges fail
- beta_add += (probs[probs>=thresh]).sum()
+ beta_add += (probs[non_seeds]).sum()
# add probability for the seeds and non-seeds
- beta_add += roots * log(beta/3012.) + (n_nodes-roots) * log(1. - beta)
+ beta_add += roots * log(beta/1000.) + (n_nodes-roots) * log(1. - beta)
if beta_add > max_beta_add:
max_beta = beta