summaryrefslogtreecommitdiffstats
path: root/experiments/ml.pyx
diff options
context:
space:
mode:
authorBen Green <ben@SEASITs-MacBook-Pro.local>2015-06-20 12:11:47 -0400
committerBen Green <ben@SEASITs-MacBook-Pro.local>2015-06-20 12:11:47 -0400
commitaaa2f530675f9f76bcd48e9641354f7a0e043012 (patch)
tree1da776ef59414233b80bc4e6afbc56bfd1e33dde /experiments/ml.pyx
parentf2891c93b96388442d44512e6c43b092153f8c25 (diff)
downloadcriminal_cascades-aaa2f530675f9f76bcd48e9641354f7a0e043012.tar.gz
added new model, ml2, which assumes all victims are infected by someone
else (unless they are root victims)
Diffstat (limited to 'experiments/ml.pyx')
-rw-r--r--experiments/ml.pyx14
1 files changed, 7 insertions, 7 deletions
diff --git a/experiments/ml.pyx b/experiments/ml.pyx
index e1ce4cf..53e614b 100644
--- a/experiments/ml.pyx
+++ b/experiments/ml.pyx
@@ -13,13 +13,13 @@ cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
DTYPE_t w1, DTYPE_t w2, DTYPE_t w3):
"""weight for successful infection, exponential time model"""
cdef DTYPE_t structural, temporal, result
- structural = delta ** dist
+ structural = dist * log(delta)
# structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta)
- temporal = exp(-alpha*dt) * (exp(alpha)-1.)
+ temporal = log(exp(alpha)-1.) - alpha*dt
# temporal = 1 - exp(-alpha*dt)
- if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR'
+ # if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR'
# temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01
- result = log(structural * temporal)
+ result = structural + temporal
# print 'st', structural, temporal
return result
@@ -42,7 +42,7 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
DTYPE_t beta, ll
list parents, failures, successes
n_roots, n_victims = len(root_victims), len(victims)
- n_nodes = 100
+ n_nodes = 148152
cdef:
np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE)
np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE)
@@ -83,8 +83,8 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
# print 'probs', probs
max_beta_add = float('-inf')
# iterate over all victim nodes to find the optimal threshold
- for beta in [0.13]:#np.arange(0.001, .2, .002):
- thresh = log(beta/(1.-beta))
+ for beta in np.arange(0.001, .2, .002):
+ thresh = log(beta/(3012*(1.-beta)))
# print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh])
roots = n_roots + len(probs[probs<thresh])