diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2015-03-30 15:02:23 -0400 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2015-03-30 15:02:23 -0400 |
| commit | f0860ef0d66a9b70ac7bc4073716c2ae0f55862a (patch) | |
| tree | c7312af233e0d406ec5018dbb7f50456e2de1d35 /experiments/ml.pyx | |
| parent | b84dddecf2eab982941704a43663cf643be027d3 (diff) | |
| download | criminal_cascades-f0860ef0d66a9b70ac7bc4073716c2ae0f55862a.tar.gz | |
New version of the model
Diffstat (limited to 'experiments/ml.pyx')
| -rw-r--r-- | experiments/ml.pyx | 59 |
1 files changed, 59 insertions, 0 deletions
diff --git a/experiments/ml.pyx b/experiments/ml.pyx new file mode 100644 index 0000000..c6291c5 --- /dev/null +++ b/experiments/ml.pyx @@ -0,0 +1,59 @@ +# cython: boundscheck=False, cdivision=True +import numpy as np +cimport numpy as np +from libc.math cimport log + +DTYPE = np.float64 +ctypedef np.float_t DTYPE_t + +cdef DTYPE_t weight_victim(int dist, int dt, DTYPE_t alpha, + DTYPE_t delta, DTYPE_t gamma): + cdef DTYPE_t structural, temporal + structural = delta ** dist + temporal = (gamma - 1. / alpha) * 1. / (1. + dt / alpha) ** gamma + return structural * temporal + + +cdef DTYPE_t weight_non_victim(int dist, int t, DTYPE_t alpha, + DTYPE_t delta, DTYPE_t gamma): + cdef DTYPE_t structural, temporal + structural = delta ** dist + temporal = 1. - 1. / (1. + (3012. - t) / alpha) ** gamma + return 1. - structural * temporal + + +def ml(dict root_victims, dict victims, dict non_victims, + DTYPE_t alpha, DTYPE_t delta, DTYPE_t gamma=1.01): + cdef: + int n_roots, n_victims, n_nodes, roots, i, dist, dt, t + DTYPE_t beta + list parents, parents_weights + n_roots, n_victims = len(root_victims), len(victims) + n_nodes = n_victims + len(non_victims) + cdef: + np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) + np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE) + for i, parents in enumerate(victims.itervalues()): + parents_weights = [weight_victim(dist, dt, alpha, delta, gamma) + for (dist, dt) in parents] + probs[i] = max(parents_weights) + for i, parents in enumerate(non_victims.itervalues()): + parents_weights = [weight_non_victim(dist, t, alpha, delta, gamma) + for (dist, t) in parents] + probs_nv[i] = max(parents_weights) + probs.sort() + probs = probs[::-1] + cdef: + np.ndarray[DTYPE_t] betas = probs / (1. + probs) + np.ndarray[DTYPE_t] cums = np.log(probs.cumsum()) + for i in xrange(n_victims - 1, 0, -1): + roots = n_roots + n_victims - 1 - i + if betas[i] > roots / float(n_nodes): + break + else: + print "alpha: {0}, delta: {1}. Everyone is a root".format(alpha, delta) + roots = n_roots + n_victims + beta = roots / float(n_nodes) + return (beta, roots, + roots * log(beta) + (n_nodes - roots) * log(1 - beta) + cums[i] + + np.log(probs_nv).sum()) |
