diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2015-09-14 23:08:02 -0400 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2015-09-14 23:08:02 -0400 |
| commit | ab0b1f3cefedb35327a19ec1b6afd560bfdf802d (patch) | |
| tree | b777f3e2c0ac0e712d8c5faab5107b1d236e2c3a /experiments/ml3.pyx | |
| parent | 960676226862d2d68c7a9c04c56d4f8157803025 (diff) | |
| download | criminal_cascades-ab0b1f3cefedb35327a19ec1b6afd560bfdf802d.tar.gz | |
Import supplements and repo reorganization
Diffstat (limited to 'experiments/ml3.pyx')
| -rw-r--r-- | experiments/ml3.pyx | 91 |
1 files changed, 0 insertions, 91 deletions
diff --git a/experiments/ml3.pyx b/experiments/ml3.pyx deleted file mode 100644 index 6e031ef..0000000 --- a/experiments/ml3.pyx +++ /dev/null @@ -1,91 +0,0 @@ -# cython: boundscheck=False, cdivision=True -import numpy as np -cimport numpy as np -from libc.math cimport log, exp - -DTYPE = np.float64 -ctypedef np.float_t DTYPE_t - -cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, - DTYPE_t w1, DTYPE_t w2, DTYPE_t w3): - """weight for successful infection, exponential time model""" - cdef DTYPE_t structural, temporal, result - structural = delta ** dist - temporal = log(exp(alpha)-1.) - alpha*dt - result = log(structural) + temporal - return result - -cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, - DTYPE_t w1, DTYPE_t w2, DTYPE_t w3): - """weight for failed infection, exponential time model""" - cdef DTYPE_t structural, temporal, result - structural = delta ** dist - temporal = exp(-alpha * dt) - result = log(1. - structural + structural * temporal) - return result - -def ml3(dict root_victims, dict victims, dict non_victims, DTYPE_t age, - DTYPE_t alpha, DTYPE_t delta): - cdef: - int n_roots, n_victims, roots, i, dist, dt, t, l - DTYPE_t beta, ll, beta_add, max_beta, max_beta_add - list parents, failures, successes - n_roots, n_victims = len(root_victims), len(victims) - cdef: - np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) - np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE) - np.ndarray[DTYPE_t] parent_dists = np.zeros(n_victims, dtype=DTYPE) - np.ndarray[DTYPE_t] parent_dts = np.zeros(n_victims, dtype=DTYPE) - - # loop through victims - for i, parents in enumerate(victims.itervalues()): - # for each victim node i, compute the probability that all its parents - # fail to infect it, also computes the probability that its most - # likely parent infects it - failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) - for (prnt, dist, dt, w1, w2, w3) in parents] - probs_fail[i] = sum(failures) - successes = [weight_success(dist, dt, alpha, delta, w1, w2, w3) - for (prnt, dist, dt, w1, w2, w3) in parents] - dists = [dist for (prnt, dist, dt, w1, w2, w3) in parents] - dts = [dt for (prnt, dist, dt, w1, w2, w3) in parents] - # find parent that maximizes log(p) - log(\tilde{p}) - # probs[i] = max(s - failures[l] for l, s in enumerate(successes)) - probs[i] = float("-inf") - for l, s in enumerate(successes): - prob = s - failures[l] - if prob > probs[i]: - probs[i] = prob - parent_dists[i] = dists[l] - parent_dts[i] = dts[l] - # probs_fail[i] = failures[l] - - # calculate log likelihood - ll = probs_fail.sum() # add probability that all edges to all victims fail - - # print 'probs', probs - max_beta_add = float('-inf') - # iterate over all victim nodes to find the optimal threshold - for beta in np.arange(0.01, 1, .01): - thresh = log(beta/(3012.*(1.-beta))) - seeds = probs<thresh - non_seeds = probs>=thresh - roots = n_roots + sum(seeds) - - beta_add = 0. - # add probability for realized edges and subtract probability these edges fail - beta_add += (probs[non_seeds]).sum() - # add probability for the seeds and non-seeds - beta_add += roots * log(beta/3012.) + sum(non_seeds) * log(1. - beta) - - if beta_add > max_beta_add: - max_beta = beta - max_roots = roots - max_beta_add = beta_add - # print 'beta:', max_beta, 'add:', max_beta_add, 'roots:', max_roots - - ll += max_beta_add - roots = max_roots - beta = max_beta - # print n_nodes, n_roots, n_victims, max_i, roots - return (beta, roots, ll)
\ No newline at end of file |
