diff options
| author | Thibaut Horel <thibaut.horel@gmail.com> | 2015-09-14 23:08:02 -0400 |
|---|---|---|
| committer | Thibaut Horel <thibaut.horel@gmail.com> | 2015-09-14 23:08:02 -0400 |
| commit | ab0b1f3cefedb35327a19ec1b6afd560bfdf802d (patch) | |
| tree | b777f3e2c0ac0e712d8c5faab5107b1d236e2c3a /hawkes/cause.py | |
| parent | 960676226862d2d68c7a9c04c56d4f8157803025 (diff) | |
| download | criminal_cascades-ab0b1f3cefedb35327a19ec1b6afd560bfdf802d.tar.gz | |
Import supplements and repo reorganization
Diffstat (limited to 'hawkes/cause.py')
| -rw-r--r-- | hawkes/cause.py | 72 |
1 files changed, 0 insertions, 72 deletions
diff --git a/hawkes/cause.py b/hawkes/cause.py deleted file mode 100644 index 17ec884..0000000 --- a/hawkes/cause.py +++ /dev/null @@ -1,72 +0,0 @@ -from cPickle import load -from math import exp, sin -from collections import Counter -from csv import reader, writer -from data2 import parse -import sys -import networkx as nx -import matplotlib.pyplot as plt -import numpy as np - - -def get_fatals(): - with open(sys.argv[1]) as fh: - fh.readline() - r = reader(fh) - d = {i + 1: parse(row[7]) for (i, row) in enumerate(r)} - d = {k: v for k, v in d.iteritems() if v} - return d.items() - - -def cause(lamb, alpha, mu): - G = nx.DiGraph() - roots, droots, infections = 0, 0, 0 - fatal_droots, fatal_infections, fatal_roots = 0, 0, 0 - fatals = get_fatals() - for ((n1, t1), s) in event_edges.iteritems(): - G.add_node((n1, t1)) - if not s: - droots += 1 - if (n1, t1) in fatals: - fatal_droots += 1 - continue - background_rate = lamb * (1 + 0.43 * sin(0.0172 * t1 + 4.36)) - neighbors = sorted([(n2, t2, alpha / d * mu * exp(-mu * (t1 - t2))) - for (n2, t2, d) in s], reverse=True) - neighbor_rate = sum(e[2] for e in neighbors) - # if sum(e[2] for e in prl[:1]) > br: - # G.add_edge((n1, t1), tuple(prl[0][:2])) - if background_rate > neighbor_rate: - roots += 1 - if (n1, t1) in fatals: - fatal_roots += 1 - else: - G.add_edge((n1, t1), tuple(neighbors[0][:2])) - # l.append(prl[0][2] / br) - infections += 1 - if (n1, t1) in fatals: - fatal_infections += 1 - # l.sort(reverse=True) - # plt.plot(l) - # plt.show() - return (droots, roots, infections, fatal_droots, - fatal_roots, fatal_infections, G) - - -def analyze_graph(G): - counts = Counter(len(c) for c in nx.weakly_connected_components(G)) - w = writer(open("components_dist.csv", "w")) - w.writerows(counts.most_common()) - edges = ((n1, t1, n2, t2) for ((n1, t1), (n2, t2)) in G.edges_iter()) - e = writer(open("edges.csv", "w")) - e.writerows(edges) - - -if __name__ == "__main__": - nodes, edges, events, event_edges = load(open("data2.pickle", "rb")) - lamb, alpha, mu = 1.1847510744e-05, 0.00316718040144, 0.00393069204339 - # print len(event_edges), sum(len(e) for e in events.itervalues()) - # print len(fatal()) - (doors, roots, infections, fatal_droots, - fatal_roots, fatal_infections, G) = cause(lamb, alpha, mu) - analyze_graph(G) |
