summaryrefslogtreecommitdiffstats
path: root/ic_experiments/ml.pyx
diff options
context:
space:
mode:
authorThibaut Horel <thibaut.horel@gmail.com>2015-09-14 23:08:02 -0400
committerThibaut Horel <thibaut.horel@gmail.com>2015-09-14 23:08:02 -0400
commitab0b1f3cefedb35327a19ec1b6afd560bfdf802d (patch)
treeb777f3e2c0ac0e712d8c5faab5107b1d236e2c3a /ic_experiments/ml.pyx
parent960676226862d2d68c7a9c04c56d4f8157803025 (diff)
downloadcriminal_cascades-ab0b1f3cefedb35327a19ec1b6afd560bfdf802d.tar.gz
Import supplements and repo reorganization
Diffstat (limited to 'ic_experiments/ml.pyx')
-rw-r--r--ic_experiments/ml.pyx109
1 files changed, 109 insertions, 0 deletions
diff --git a/ic_experiments/ml.pyx b/ic_experiments/ml.pyx
new file mode 100644
index 0000000..e1bf26b
--- /dev/null
+++ b/ic_experiments/ml.pyx
@@ -0,0 +1,109 @@
+# cython: boundscheck=False, cdivision=True
+import numpy as np
+cimport numpy as np
+from libc.math cimport log, exp
+
+DTYPE = np.float64
+ctypedef np.float_t DTYPE_t
+
+cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYPE_t lmbda,
+ DTYPE_t t_scale, DTYPE_t w1, DTYPE_t w2, DTYPE_t w3):
+ """weight for successful infection, exponential time model"""
+ cdef DTYPE_t structural, temporal, result
+ # structural = delta ** (dist**1)
+ structural = delta * lmbda**(dist-1)
+ temporal = log(exp(alpha/t_scale)-1.) - alpha*dt/t_scale
+ # temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01
+ result = log(structural) + temporal
+ return result
+
+cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYPE_t lmbda,
+ DTYPE_t t_scale, DTYPE_t w1, DTYPE_t w2, DTYPE_t w3):
+ """weight for failed infection, exponential time model"""
+ cdef DTYPE_t structural, temporal, result
+ # structural = delta ** (dist**1)
+ structural = delta * lmbda**(dist-1)
+ temporal = exp(-alpha * dt/t_scale)
+ # temporal = 1. - 1. / (1. + dt/alpha)**0.01
+ result = log(1. - structural + structural * temporal)
+ return result
+
+def ml(dict root_victims, dict victims, dict non_victims,
+ DTYPE_t alpha, DTYPE_t delta, DTYPE_t lmbda):
+ cdef:
+ int n_roots, n_victims, roots, i, dist, dt, t, l, n_days
+ DTYPE_t beta, ll, beta_add, max_beta, max_beta_add
+ list parents, failures, successes
+ n_roots, n_victims = len(root_victims), len(victims)
+ n_nodes = 148152
+ n_days = 3012
+ t_scale = 1.
+ cdef:
+ np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE)
+ np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE)
+ np.ndarray[DTYPE_t] parent_dists = np.zeros(n_victims, dtype=DTYPE)
+ np.ndarray[DTYPE_t] parent_dts = np.zeros(n_victims, dtype=DTYPE)
+ np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE)
+
+ # loop through victims
+ for i, parents in enumerate(victims.itervalues()):
+ # for each victim node i, compute the probability that all its parents
+ # fail to infect it, also computes the probability that its most
+ # likely parent infects it
+ failures = [weight_failure(dist, dt, alpha, delta, lmbda, t_scale, w1, w2, w3)
+ for (prnt, dist, dt, w1, w2, w3) in parents]
+ probs_fail[i] = sum(failures)
+ successes = [weight_success(dist, dt, alpha, delta, lmbda, t_scale, w1, w2, w3)
+ for (prnt, dist, dt, w1, w2, w3) in parents]
+ dists = [dist for (prnt, dist, dt, w1, w2, w3) in parents]
+ dts = [dt for (prnt, dist, dt, w1, w2, w3) in parents]
+ # find parent that maximizes log(p) - log(\tilde{p})
+ probs[i] = float("-inf")
+ for l, s in enumerate(successes):
+ prob = s - failures[l]
+ if prob > probs[i]:
+ probs[i] = prob
+ parent_dists[i] = dists[l]
+ parent_dts[i] = dts[l]
+ # probs_fail[i] = failures[l]
+
+ # loop through non-victims
+ for i, parents in enumerate(non_victims.itervalues()):
+ # for each non victim node, compute the probability that all its
+ # parents fail to infect it
+ failures = [weight_failure(dist, dt, alpha, delta, lmbda, t_scale, w1, w2, w3)
+ for (prnt, dist, dt, w1, w2, w3) in parents]
+ probs_nv[i] = sum(failures)
+
+ # calculate log likelihood
+ ll = probs_fail.sum() # add probability that all edges to all victims fail
+ ll += probs_nv.sum() # add probability that all edges to non_victims fail
+
+ max_beta_add = float('-inf')
+ # iterate over all victim nodes to find the optimal threshold
+ for beta in np.arange(0.01, 1., 0.01):
+ thresh = log(beta/(n_days*(1.-beta)))
+ seeds = probs<thresh
+ non_seeds = probs>=thresh
+ roots = n_roots + sum(seeds)
+
+ beta_add = 0.
+ # add probability for realized edges and subtract probability these edges fail
+ beta_add += (probs[non_seeds]).sum()
+ # add probability for the seeds and non-seeds
+ beta_add += roots * log(beta/n_days) + (n_nodes-roots) * log(1. - beta)
+
+ if beta_add > max_beta_add:
+ max_beta = beta
+ max_roots = roots
+ max_beta_add = beta_add
+ pdists = (parent_dists[non_seeds]).mean()
+ pdts = (parent_dts[non_seeds]).mean()
+ # print 'beta:', max_beta, 'add:', max_beta_add, 'roots:', max_roots
+
+ ll += max_beta_add
+ roots = max_roots
+ beta = max_beta
+ print 'dist:', pdists
+ print 'dt:', pdts
+ return (beta, roots, ll)