summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rwxr-xr-xR Scripts/generate-dag-dat.R10
-rw-r--r--experiments/build/temp.macosx-10.6-x86_64-2.7/ml.obin298724 -> 304076 bytes
-rw-r--r--experiments/build_network.py2
-rw-r--r--experiments/ml.c470
-rw-r--r--experiments/ml.pyx26
-rwxr-xr-xexperiments/ml.sobin109636 -> 109372 bytes
-rw-r--r--experiments/out.log2550
-rw-r--r--experiments/process.py9
8 files changed, 2834 insertions, 233 deletions
diff --git a/R Scripts/generate-dag-dat.R b/R Scripts/generate-dag-dat.R
index b5f2c3a..a2df165 100755
--- a/R Scripts/generate-dag-dat.R
+++ b/R Scripts/generate-dag-dat.R
@@ -6,7 +6,7 @@ vic_ids = which(V(hyp_lcc)$vic==TRUE)
edgeWeights = function(eis){return(c(hyp_lcc_edges$weight[eis],Inf,Inf)[1:3])}
-dag_dat_all = data.frame(matrix(nrow=1,ncol=8))
+dag_dat_all = data.frame(matrix(nrow=1,ncol=10))
hyp_lcc2 = remove.edge.attribute(hyp_lcc,'weight')
ei = 1
ptm=proc.time()
@@ -28,15 +28,15 @@ for (u in vic_ids){
#will be faster to pre-allocate and fill in rather than rbind each time
dag_dat_all[ei:(ei+length(nbhd)-1),] = data.frame(rep(u,length(nbhd)), nbhd,
rep(tu,length(nbhd)), tvs, dists,
- weights, row.names=NULL)
+ weights, u_spawn, v_spawn, row.names=NULL)
ei = ei + length(nbhd)
}
print(proc.time()-ptm) #3.5 hours
-colnames(dag_dat_all) = c('from','to','t1','t2','dist','w1','w2','w3')
+colnames(dag_dat_all) = c('from','to','t1','t2','dist','w1','w2','w3','spawn1','spawn2')
rownames(dag_dat_all) = NULL
-dag_dat_all$spawn1 = hyp_lcc_verts$spawn.date[dag_dat_all$from]
-dag_dat_all$spawn2 = hyp_lcc_verts$spawn.date[dag_dat_all$to]
+# dag_dat_all$spawn1 = hyp_lcc_verts$spawn.date[dag_dat_all$from]
+# dag_dat_all$spawn2 = hyp_lcc_verts$spawn.date[dag_dat_all$to]
save(dag_dat_all, file='Results/dag_dat_all.RData')
write.csv(dag_dat_all, file='Results/dag_dat_all.csv')
diff --git a/experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o b/experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o
index cbe973b..8b0e648 100644
--- a/experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o
+++ b/experiments/build/temp.macosx-10.6-x86_64-2.7/ml.o
Binary files differ
diff --git a/experiments/build_network.py b/experiments/build_network.py
index 0756ded..e34db1c 100644
--- a/experiments/build_network.py
+++ b/experiments/build_network.py
@@ -39,10 +39,12 @@ def build_network(filename):
age += int(row["t1"]) - int(row["spawn1"])
victims[from_] = []
root_victims = {}
+ print victims.keys()
for victim in victims.keys():
if not victims[victim]:
del victims[victim]
root_victims[victim] = []
+ print root_victims.keys()
print len(root_victims), len(victims), len(non_victims)
return root_victims, victims, non_victims, age
diff --git a/experiments/ml.c b/experiments/ml.c
index cdf4064..4c3f024 100644
--- a/experiments/ml.c
+++ b/experiments/ml.c
@@ -1326,7 +1326,6 @@ static char __pyx_k_range[] = "range";
static char __pyx_k_roots[] = "roots";
static char __pyx_k_throw[] = "throw";
static char __pyx_k_zeros[] = "zeros";
-static char __pyx_k_arange[] = "arange";
static char __pyx_k_import[] = "__import__";
static char __pyx_k_thresh[] = "thresh";
static char __pyx_k_float64[] = "float64";
@@ -1369,7 +1368,6 @@ static PyObject *__pyx_kp_s_Users_ben_Documents_Cascade_Pro;
static PyObject *__pyx_n_s_ValueError;
static PyObject *__pyx_n_s_age;
static PyObject *__pyx_n_s_alpha;
-static PyObject *__pyx_n_s_arange;
static PyObject *__pyx_n_s_args;
static PyObject *__pyx_n_s_beta;
static PyObject *__pyx_n_s_beta_add;
@@ -1426,9 +1424,7 @@ static PyObject *__pyx_n_s_w1;
static PyObject *__pyx_n_s_w2;
static PyObject *__pyx_n_s_w3;
static PyObject *__pyx_n_s_zeros;
-static PyObject *__pyx_float__1;
-static PyObject *__pyx_float__001;
-static PyObject *__pyx_float_0_001;
+static PyObject *__pyx_float_0_13;
static PyObject *__pyx_tuple_;
static PyObject *__pyx_tuple__2;
static PyObject *__pyx_tuple__3;
@@ -1501,22 +1497,22 @@ static __pyx_t_2ml_DTYPE_t __pyx_f_2ml_weight_success(int __pyx_v_dist, int __py
* cdef DTYPE_t structural, temporal, result
* structural = delta ** dist # <<<<<<<<<<<<<<
* # structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta)
- * # temporal = exp(-alpha*dt) * (exp(alpha)-1)
+ * temporal = exp(-alpha*dt) * (exp(alpha)-1.)
*/
__pyx_v_structural = pow(__pyx_v_delta, ((__pyx_t_2ml_DTYPE_t)__pyx_v_dist));
- /* "ml.pyx":19
+ /* "ml.pyx":18
+ * structural = delta ** dist
* # structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta)
- * # temporal = exp(-alpha*dt) * (exp(alpha)-1)
- * temporal = 1 - exp(-alpha*dt) # <<<<<<<<<<<<<<
+ * temporal = exp(-alpha*dt) * (exp(alpha)-1.) # <<<<<<<<<<<<<<
+ * # temporal = 1 - exp(-alpha*dt)
* if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR'
- * # temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01
*/
- __pyx_v_temporal = (1.0 - exp(((-__pyx_v_alpha) * __pyx_v_dt)));
+ __pyx_v_temporal = (exp(((-__pyx_v_alpha) * __pyx_v_dt)) * (exp(__pyx_v_alpha) - 1.));
/* "ml.pyx":20
- * # temporal = exp(-alpha*dt) * (exp(alpha)-1)
- * temporal = 1 - exp(-alpha*dt)
+ * temporal = exp(-alpha*dt) * (exp(alpha)-1.)
+ * # temporal = 1 - exp(-alpha*dt)
* if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR' # <<<<<<<<<<<<<<
* # temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01
* result = log(structural * temporal)
@@ -1937,8 +1933,8 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
__pyx_t_2ml_DTYPE_t __pyx_t_23;
__pyx_t_2ml_DTYPE_t __pyx_t_24;
int __pyx_t_25;
- double __pyx_t_26;
- PyObject *(*__pyx_t_27)(PyObject *);
+ int __pyx_t_26;
+ double __pyx_t_27;
int __pyx_t_28;
int __pyx_lineno = 0;
const char *__pyx_filename = NULL;
@@ -1967,7 +1963,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
* DTYPE_t beta, ll
* list parents, failures, successes
* n_roots, n_victims = len(root_victims), len(victims) # <<<<<<<<<<<<<<
- * n_nodes = 11270
+ * n_nodes = 100
* cdef:
*/
if (unlikely(__pyx_v_root_victims == Py_None)) {
@@ -1986,14 +1982,14 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
/* "ml.pyx":45
* list parents, failures, successes
* n_roots, n_victims = len(root_victims), len(victims)
- * n_nodes = 11270 # <<<<<<<<<<<<<<
+ * n_nodes = 100 # <<<<<<<<<<<<<<
* cdef:
* np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE)
*/
- __pyx_v_n_nodes = 11270;
+ __pyx_v_n_nodes = 100;
/* "ml.pyx":47
- * n_nodes = 11270
+ * n_nodes = 100
* cdef:
* np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE) # <<<<<<<<<<<<<<
* np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE)
@@ -2119,7 +2115,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
__pyx_t_9 = ((PyArrayObject *)__pyx_t_3);
{
__Pyx_BufFmt_StackElem __pyx_stack[1];
- if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_probs_nv.rcbuffer->pybuffer, (PyObject*)__pyx_t_9, &__Pyx_TypeInfo_nn___pyx_t_2ml_DTYPE_t, PyBUF_FORMAT| PyBUF_STRIDES, 1, 0, __pyx_stack) == -1)) {
+ if (unlikely(__Pyx_GetBufferAndValidate(&__pyx_pybuffernd_probs_nv.rcbuffer->pybuffer, (PyObject*)__pyx_t_9, &__Pyx_TypeInfo_nn___pyx_t_2ml_DTYPE_t, PyBUF_FORMAT| PyBUF_STRIDES| PyBUF_WRITABLE, 1, 0, __pyx_stack) == -1)) {
__pyx_v_probs_nv = ((PyArrayObject *)Py_None); __Pyx_INCREF(Py_None); __pyx_pybuffernd_probs_nv.rcbuffer->pybuffer.buf = NULL;
{__pyx_filename = __pyx_f[0]; __pyx_lineno = 49; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
} else {__pyx_pybuffernd_probs_nv.diminfo[0].strides = __pyx_pybuffernd_probs_nv.rcbuffer->pybuffer.strides[0]; __pyx_pybuffernd_probs_nv.diminfo[0].shape = __pyx_pybuffernd_probs_nv.rcbuffer->pybuffer.shape[0];
@@ -2478,186 +2474,337 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
}
__Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
- /* "ml.pyx":76
+ /* "ml.pyx":65
+ *
+ * # loop through non-victims
+ * for i, parents in enumerate(non_victims.itervalues()): # <<<<<<<<<<<<<<
+ * # for each non victim node, compute the probability that all its
+ * # parents fail to infect it
+ */
+ __pyx_t_10 = 0;
+ __pyx_t_1 = 0;
+ if (unlikely(__pyx_v_non_victims == Py_None)) {
+ PyErr_Format(PyExc_AttributeError, "'NoneType' object has no attribute '%s'", "itervalues");
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 65; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_t_5 = __Pyx_dict_iterator(__pyx_v_non_victims, 1, __pyx_n_s_itervalues, (&__pyx_t_2), (&__pyx_t_11)); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 65; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_5);
+ __Pyx_XDECREF(__pyx_t_3);
+ __pyx_t_3 = __pyx_t_5;
+ __pyx_t_5 = 0;
+ while (1) {
+ __pyx_t_12 = __Pyx_dict_iter_next(__pyx_t_3, __pyx_t_2, &__pyx_t_1, NULL, &__pyx_t_5, NULL, __pyx_t_11);
+ if (unlikely(__pyx_t_12 == 0)) break;
+ if (unlikely(__pyx_t_12 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 65; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_5);
+ if (!(likely(PyList_CheckExact(__pyx_t_5))||((__pyx_t_5) == Py_None)||(PyErr_Format(PyExc_TypeError, "Expected %.16s, got %.200s", "list", Py_TYPE(__pyx_t_5)->tp_name), 0))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 65; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_XDECREF_SET(__pyx_v_parents, ((PyObject*)__pyx_t_5));
+ __pyx_t_5 = 0;
+ __pyx_v_i = __pyx_t_10;
+ __pyx_t_10 = (__pyx_t_10 + 1);
+
+ /* "ml.pyx":68
+ * # for each non victim node, compute the probability that all its
+ * # parents fail to infect it
+ * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) # <<<<<<<<<<<<<<
+ * for (dist, dt, w1, w2, w3) in parents]
+ * probs_nv[i] = sum(failures)
+ */
+ __pyx_t_5 = PyList_New(0); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_5);
+
+ /* "ml.pyx":69
+ * # parents fail to infect it
+ * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3)
+ * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<<
+ * probs_nv[i] = sum(failures)
+ *
+ */
+ if (unlikely(__pyx_v_parents == Py_None)) {
+ PyErr_SetString(PyExc_TypeError, "'NoneType' object is not iterable");
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ __pyx_t_4 = __pyx_v_parents; __Pyx_INCREF(__pyx_t_4); __pyx_t_13 = 0;
+ for (;;) {
+ if (__pyx_t_13 >= PyList_GET_SIZE(__pyx_t_4)) break;
+ #if CYTHON_COMPILING_IN_CPYTHON
+ __pyx_t_6 = PyList_GET_ITEM(__pyx_t_4, __pyx_t_13); __Pyx_INCREF(__pyx_t_6); __pyx_t_13++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ #else
+ __pyx_t_6 = PySequence_ITEM(__pyx_t_4, __pyx_t_13); __pyx_t_13++; if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ #endif
+ if ((likely(PyTuple_CheckExact(__pyx_t_6))) || (PyList_CheckExact(__pyx_t_6))) {
+ PyObject* sequence = __pyx_t_6;
+ #if CYTHON_COMPILING_IN_CPYTHON
+ Py_ssize_t size = Py_SIZE(sequence);
+ #else
+ Py_ssize_t size = PySequence_Size(sequence);
+ #endif
+ if (unlikely(size != 5)) {
+ if (size > 5) __Pyx_RaiseTooManyValuesError(5);
+ else if (size >= 0) __Pyx_RaiseNeedMoreValuesError(size);
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ }
+ #if CYTHON_COMPILING_IN_CPYTHON
+ if (likely(PyTuple_CheckExact(sequence))) {
+ __pyx_t_14 = PyTuple_GET_ITEM(sequence, 0);
+ __pyx_t_15 = PyTuple_GET_ITEM(sequence, 1);
+ __pyx_t_16 = PyTuple_GET_ITEM(sequence, 2);
+ __pyx_t_17 = PyTuple_GET_ITEM(sequence, 3);
+ __pyx_t_18 = PyTuple_GET_ITEM(sequence, 4);
+ } else {
+ __pyx_t_14 = PyList_GET_ITEM(sequence, 0);
+ __pyx_t_15 = PyList_GET_ITEM(sequence, 1);
+ __pyx_t_16 = PyList_GET_ITEM(sequence, 2);
+ __pyx_t_17 = PyList_GET_ITEM(sequence, 3);
+ __pyx_t_18 = PyList_GET_ITEM(sequence, 4);
+ }
+ __Pyx_INCREF(__pyx_t_14);
+ __Pyx_INCREF(__pyx_t_15);
+ __Pyx_INCREF(__pyx_t_16);
+ __Pyx_INCREF(__pyx_t_17);
+ __Pyx_INCREF(__pyx_t_18);
+ #else
+ {
+ Py_ssize_t i;
+ PyObject** temps[5] = {&__pyx_t_14,&__pyx_t_15,&__pyx_t_16,&__pyx_t_17,&__pyx_t_18};
+ for (i=0; i < 5; i++) {
+ PyObject* item = PySequence_ITEM(sequence, i); if (unlikely(!item)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(item);
+ *(temps[i]) = item;
+ }
+ }
+ #endif
+ __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
+ } else {
+ Py_ssize_t index = -1;
+ PyObject** temps[5] = {&__pyx_t_14,&__pyx_t_15,&__pyx_t_16,&__pyx_t_17,&__pyx_t_18};
+ __pyx_t_19 = PyObject_GetIter(__pyx_t_6); if (unlikely(!__pyx_t_19)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_19);
+ __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
+ __pyx_t_20 = Py_TYPE(__pyx_t_19)->tp_iternext;
+ for (index=0; index < 5; index++) {
+ PyObject* item = __pyx_t_20(__pyx_t_19); if (unlikely(!item)) goto __pyx_L17_unpacking_failed;
+ __Pyx_GOTREF(item);
+ *(temps[index]) = item;
+ }
+ if (__Pyx_IternextUnpackEndCheck(__pyx_t_20(__pyx_t_19), 5) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_20 = NULL;
+ __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0;
+ goto __pyx_L18_unpacking_done;
+ __pyx_L17_unpacking_failed:;
+ __Pyx_DECREF(__pyx_t_19); __pyx_t_19 = 0;
+ __pyx_t_20 = NULL;
+ if (__Pyx_IterFinish() == 0) __Pyx_RaiseNeedMoreValuesError(index);
+ {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_L18_unpacking_done:;
+ }
+ __pyx_t_12 = __Pyx_PyInt_As_int(__pyx_t_14); if (unlikely((__pyx_t_12 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_DECREF(__pyx_t_14); __pyx_t_14 = 0;
+ __pyx_t_26 = __Pyx_PyInt_As_int(__pyx_t_15); if (unlikely((__pyx_t_26 == (int)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 69; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_DECREF(__pyx_t_15); __pyx_t_15 = 0;
+ __pyx_v_dist = __pyx_t_12;
+ __pyx_v_dt = __pyx_t_26;
+ __Pyx_XDECREF_SET(__pyx_v_w1, __pyx_t_16);
+ __pyx_t_16 = 0;
+ __Pyx_XDECREF_SET(__pyx_v_w2, __pyx_t_17);
+ __pyx_t_17 = 0;
+ __Pyx_XDECREF_SET(__pyx_v_w3, __pyx_t_18);
+ __pyx_t_18 = 0;
+
+ /* "ml.pyx":68
+ * # for each non victim node, compute the probability that all its
+ * # parents fail to infect it
+ * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3) # <<<<<<<<<<<<<<
+ * for (dist, dt, w1, w2, w3) in parents]
+ * probs_nv[i] = sum(failures)
+ */
+ __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_v_w1); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_23 = __pyx_PyFloat_AsDouble(__pyx_v_w2); if (unlikely((__pyx_t_23 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_v_w3); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = PyFloat_FromDouble(__pyx_f_2ml_weight_failure(__pyx_v_dist, __pyx_v_dt, __pyx_v_alpha, __pyx_v_delta, __pyx_t_22, __pyx_t_23, __pyx_t_24)); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_6);
+ if (unlikely(__Pyx_ListComp_Append(__pyx_t_5, (PyObject*)__pyx_t_6))) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 68; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
+
+ /* "ml.pyx":69
+ * # parents fail to infect it
+ * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3)
+ * for (dist, dt, w1, w2, w3) in parents] # <<<<<<<<<<<<<<
+ * probs_nv[i] = sum(failures)
+ *
+ */
+ }
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __Pyx_XGOTREF(__pyx_cur_scope->__pyx_v_failures);
+ __Pyx_XDECREF_SET(__pyx_cur_scope->__pyx_v_failures, ((PyObject*)__pyx_t_5));
+ __Pyx_GIVEREF(__pyx_t_5);
+ __pyx_t_5 = 0;
+
+ /* "ml.pyx":70
+ * failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3)
+ * for (dist, dt, w1, w2, w3) in parents]
+ * probs_nv[i] = sum(failures) # <<<<<<<<<<<<<<
+ *
+ * # print successes
+ */
+ __pyx_t_5 = PyTuple_New(1); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_5);
+ __Pyx_INCREF(__pyx_cur_scope->__pyx_v_failures);
+ PyTuple_SET_ITEM(__pyx_t_5, 0, __pyx_cur_scope->__pyx_v_failures);
+ __Pyx_GIVEREF(__pyx_cur_scope->__pyx_v_failures);
+ __pyx_t_4 = __Pyx_PyObject_Call(__pyx_builtin_sum, __pyx_t_5, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_4);
+ __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
+ __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 70; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_26 = __pyx_v_i;
+ if (__pyx_t_26 < 0) __pyx_t_26 += __pyx_pybuffernd_probs_nv.diminfo[0].shape;
+ *__Pyx_BufPtrStrided1d(__pyx_t_2ml_DTYPE_t *, __pyx_pybuffernd_probs_nv.rcbuffer->pybuffer.buf, __pyx_t_26, __pyx_pybuffernd_probs_nv.diminfo[0].strides) = __pyx_t_24;
+ }
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
+
+ /* "ml.pyx":80
* # cdef:
* # np.ndarray[DTYPE_t] cums = probs.cumsum()
* ll = probs_fail.sum() # add probability that all edges to victims fail # <<<<<<<<<<<<<<
* ll += probs_nv.sum() # add probability that all edges to non_victims fail
*
*/
- __pyx_t_5 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_fail), __pyx_n_s_sum); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 76; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_5);
- __pyx_t_4 = NULL;
- if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_5))) {
- __pyx_t_4 = PyMethod_GET_SELF(__pyx_t_5);
- if (likely(__pyx_t_4)) {
- PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5);
- __Pyx_INCREF(__pyx_t_4);
+ __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_fail), __pyx_n_s_sum); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_5 = NULL;
+ if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_4))) {
+ __pyx_t_5 = PyMethod_GET_SELF(__pyx_t_4);
+ if (likely(__pyx_t_5)) {
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4);
+ __Pyx_INCREF(__pyx_t_5);
__Pyx_INCREF(function);
- __Pyx_DECREF_SET(__pyx_t_5, function);
+ __Pyx_DECREF_SET(__pyx_t_4, function);
}
}
- if (__pyx_t_4) {
- __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 76; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ if (__pyx_t_5) {
+ __pyx_t_3 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
} else {
- __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_5); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 76; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_3 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
__Pyx_GOTREF(__pyx_t_3);
- __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
- __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 76; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_3); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
- __pyx_v_ll = __pyx_t_22;
+ __pyx_v_ll = __pyx_t_24;
- /* "ml.pyx":77
+ /* "ml.pyx":81
* # np.ndarray[DTYPE_t] cums = probs.cumsum()
* ll = probs_fail.sum() # add probability that all edges to victims fail
* ll += probs_nv.sum() # add probability that all edges to non_victims fail # <<<<<<<<<<<<<<
*
* # print 'probs', probs
*/
- __pyx_t_3 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_3 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_3);
- __pyx_t_4 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_nv), __pyx_n_s_sum); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_4);
+ __pyx_t_5 = __Pyx_PyObject_GetAttrStr(((PyObject *)__pyx_v_probs_nv), __pyx_n_s_sum); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_5);
__pyx_t_6 = NULL;
- if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_4))) {
- __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_4);
+ if (CYTHON_COMPILING_IN_CPYTHON && likely(PyMethod_Check(__pyx_t_5))) {
+ __pyx_t_6 = PyMethod_GET_SELF(__pyx_t_5);
if (likely(__pyx_t_6)) {
- PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_4);
+ PyObject* function = PyMethod_GET_FUNCTION(__pyx_t_5);
__Pyx_INCREF(__pyx_t_6);
__Pyx_INCREF(function);
- __Pyx_DECREF_SET(__pyx_t_4, function);
+ __Pyx_DECREF_SET(__pyx_t_5, function);
}
}
if (__pyx_t_6) {
- __pyx_t_5 = __Pyx_PyObject_CallOneArg(__pyx_t_4, __pyx_t_6); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_t_5, __pyx_t_6); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
} else {
- __pyx_t_5 = __Pyx_PyObject_CallNoArg(__pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = __Pyx_PyObject_CallNoArg(__pyx_t_5); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
- __Pyx_GOTREF(__pyx_t_5);
- __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
- __pyx_t_4 = PyNumber_InPlaceAdd(__pyx_t_3, __pyx_t_5); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_4);
- __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
__Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
- __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 77; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_5 = PyNumber_InPlaceAdd(__pyx_t_3, __pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_5);
+ __Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
__Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
- __pyx_v_ll = __pyx_t_22;
+ __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_5); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 81; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
+ __pyx_v_ll = __pyx_t_24;
- /* "ml.pyx":80
+ /* "ml.pyx":84
*
* # print 'probs', probs
* max_beta_add = float('-inf') # <<<<<<<<<<<<<<
* # iterate over all victim nodes to find the optimal threshold
- * for beta in np.arange(0.001, .1, .001):
+ * for beta in [0.13]:#np.arange(0.001, .2, .002):
*/
- __pyx_t_26 = __Pyx_PyObject_AsDouble(__pyx_kp_s_inf); if (unlikely(__pyx_t_26 == ((double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __pyx_t_4 = PyFloat_FromDouble(__pyx_t_26); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 80; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_4);
- __pyx_v_max_beta_add = __pyx_t_4;
- __pyx_t_4 = 0;
+ __pyx_t_27 = __Pyx_PyObject_AsDouble(__pyx_kp_s_inf); if (unlikely(__pyx_t_27 == ((double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_5 = PyFloat_FromDouble(__pyx_t_27); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 84; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __Pyx_GOTREF(__pyx_t_5);
+ __pyx_v_max_beta_add = __pyx_t_5;
+ __pyx_t_5 = 0;
- /* "ml.pyx":82
+ /* "ml.pyx":86
* max_beta_add = float('-inf')
* # iterate over all victim nodes to find the optimal threshold
- * for beta in np.arange(0.001, .1, .001): # <<<<<<<<<<<<<<
+ * for beta in [0.13]:#np.arange(0.001, .2, .002): # <<<<<<<<<<<<<<
* thresh = log(beta/(1.-beta))
* # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh])
*/
- __pyx_t_4 = __Pyx_GetModuleGlobalName(__pyx_n_s_np); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_4);
- __pyx_t_5 = __Pyx_PyObject_GetAttrStr(__pyx_t_4, __pyx_n_s_arange); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_5);
- __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
- __pyx_t_4 = __Pyx_PyObject_Call(__pyx_t_5, __pyx_tuple_, NULL); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_4);
- __Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
- if (likely(PyList_CheckExact(__pyx_t_4)) || PyTuple_CheckExact(__pyx_t_4)) {
- __pyx_t_5 = __pyx_t_4; __Pyx_INCREF(__pyx_t_5); __pyx_t_1 = 0;
- __pyx_t_27 = NULL;
- } else {
- __pyx_t_1 = -1; __pyx_t_5 = PyObject_GetIter(__pyx_t_4); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __Pyx_GOTREF(__pyx_t_5);
- __pyx_t_27 = Py_TYPE(__pyx_t_5)->tp_iternext; if (unlikely(!__pyx_t_27)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- }
- __Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
+ __pyx_t_5 = __pyx_tuple_; __Pyx_INCREF(__pyx_t_5); __pyx_t_2 = 0;
for (;;) {
- if (likely(!__pyx_t_27)) {
- if (likely(PyList_CheckExact(__pyx_t_5))) {
- if (__pyx_t_1 >= PyList_GET_SIZE(__pyx_t_5)) break;
- #if CYTHON_COMPILING_IN_CPYTHON
- __pyx_t_4 = PyList_GET_ITEM(__pyx_t_5, __pyx_t_1); __Pyx_INCREF(__pyx_t_4); __pyx_t_1++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- #else
- __pyx_t_4 = PySequence_ITEM(__pyx_t_5, __pyx_t_1); __pyx_t_1++; if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- #endif
- } else {
- if (__pyx_t_1 >= PyTuple_GET_SIZE(__pyx_t_5)) break;
- #if CYTHON_COMPILING_IN_CPYTHON
- __pyx_t_4 = PyTuple_GET_ITEM(__pyx_t_5, __pyx_t_1); __Pyx_INCREF(__pyx_t_4); __pyx_t_1++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- #else
- __pyx_t_4 = PySequence_ITEM(__pyx_t_5, __pyx_t_1); __pyx_t_1++; if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- #endif
- }
- } else {
- __pyx_t_4 = __pyx_t_27(__pyx_t_5);
- if (unlikely(!__pyx_t_4)) {
- PyObject* exc_type = PyErr_Occurred();
- if (exc_type) {
- if (likely(exc_type == PyExc_StopIteration || PyErr_GivenExceptionMatches(exc_type, PyExc_StopIteration))) PyErr_Clear();
- else {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- }
- break;
- }
- __Pyx_GOTREF(__pyx_t_4);
- }
- __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ if (__pyx_t_2 >= 1) break;
+ #if CYTHON_COMPILING_IN_CPYTHON
+ __pyx_t_4 = PyTuple_GET_ITEM(__pyx_t_5, __pyx_t_2); __Pyx_INCREF(__pyx_t_4); __pyx_t_2++; if (unlikely(0 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ #else
+ __pyx_t_4 = PySequence_ITEM(__pyx_t_5, __pyx_t_2); __pyx_t_2++; if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ #endif
+ __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_4); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
- __pyx_v_beta = __pyx_t_22;
+ __pyx_v_beta = __pyx_t_24;
- /* "ml.pyx":83
+ /* "ml.pyx":87
* # iterate over all victim nodes to find the optimal threshold
- * for beta in np.arange(0.001, .1, .001):
+ * for beta in [0.13]:#np.arange(0.001, .2, .002):
* thresh = log(beta/(1.-beta)) # <<<<<<<<<<<<<<
* # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh])
* roots = n_roots + len(probs[probs<thresh])
*/
__pyx_v_thresh = log((__pyx_v_beta / (1. - __pyx_v_beta)));
- /* "ml.pyx":85
+ /* "ml.pyx":89
* thresh = log(beta/(1.-beta))
* # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh])
* roots = n_roots + len(probs[probs<thresh]) # <<<<<<<<<<<<<<
*
* # add probability for realized edges and subtract probability these edges fail
*/
- __pyx_t_4 = PyFloat_FromDouble(__pyx_v_thresh); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = PyFloat_FromDouble(__pyx_v_thresh); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_4);
- __pyx_t_3 = PyObject_RichCompare(((PyObject *)__pyx_v_probs), __pyx_t_4, Py_LT); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_3 = PyObject_RichCompare(((PyObject *)__pyx_v_probs), __pyx_t_4, Py_LT); __Pyx_XGOTREF(__pyx_t_3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
- __pyx_t_4 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_t_3); if (unlikely(__pyx_t_4 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
+ __pyx_t_4 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_t_3); if (unlikely(__pyx_t_4 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
__Pyx_GOTREF(__pyx_t_4);
__Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
- __pyx_t_2 = PyObject_Length(__pyx_t_4); if (unlikely(__pyx_t_2 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 85; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_1 = PyObject_Length(__pyx_t_4); if (unlikely(__pyx_t_1 == -1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 89; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
- __pyx_v_roots = (__pyx_v_n_roots + __pyx_t_2);
+ __pyx_v_roots = (__pyx_v_n_roots + __pyx_t_1);
- /* "ml.pyx":88
+ /* "ml.pyx":92
*
* # add probability for realized edges and subtract probability these edges fail
* beta_add = (probs[probs>=thresh]).sum() # <<<<<<<<<<<<<<
* # add probability for the seeds and non-seeds
- * beta_add += roots * log(beta) + (n_nodes-roots) * log(1 - beta)
+ * beta_add += roots * log(beta) + (n_nodes-roots) * log(1. - beta)
*/
- __pyx_t_3 = PyFloat_FromDouble(__pyx_v_thresh); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_3 = PyFloat_FromDouble(__pyx_v_thresh); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_3);
- __pyx_t_6 = PyObject_RichCompare(((PyObject *)__pyx_v_probs), __pyx_t_3, Py_GE); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = PyObject_RichCompare(((PyObject *)__pyx_v_probs), __pyx_t_3, Py_GE); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
- __pyx_t_3 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_t_6); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
+ __pyx_t_3 = PyObject_GetItem(((PyObject *)__pyx_v_probs), __pyx_t_6); if (unlikely(__pyx_t_3 == NULL)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
__Pyx_GOTREF(__pyx_t_3);
__Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
- __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_sum); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = __Pyx_PyObject_GetAttrStr(__pyx_t_3, __pyx_n_s_sum); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_6);
__Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
__pyx_t_3 = NULL;
@@ -2671,56 +2818,56 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
}
}
if (__pyx_t_3) {
- __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_t_3); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = __Pyx_PyObject_CallOneArg(__pyx_t_6, __pyx_t_3); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_3); __pyx_t_3 = 0;
} else {
- __pyx_t_4 = __Pyx_PyObject_CallNoArg(__pyx_t_6); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 88; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = __Pyx_PyObject_CallNoArg(__pyx_t_6); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
}
__Pyx_GOTREF(__pyx_t_4);
__Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
__Pyx_XDECREF_SET(__pyx_v_beta_add, __pyx_t_4);
__pyx_t_4 = 0;
- /* "ml.pyx":90
+ /* "ml.pyx":94
* beta_add = (probs[probs>=thresh]).sum()
* # add probability for the seeds and non-seeds
- * beta_add += roots * log(beta) + (n_nodes-roots) * log(1 - beta) # <<<<<<<<<<<<<<
+ * beta_add += roots * log(beta) + (n_nodes-roots) * log(1. - beta) # <<<<<<<<<<<<<<
*
* if beta_add > max_beta_add:
*/
- __pyx_t_4 = PyFloat_FromDouble(((__pyx_v_roots * log(__pyx_v_beta)) + ((__pyx_v_n_nodes - __pyx_v_roots) * log((1.0 - __pyx_v_beta))))); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = PyFloat_FromDouble(((__pyx_v_roots * log(__pyx_v_beta)) + ((__pyx_v_n_nodes - __pyx_v_roots) * log((1. - __pyx_v_beta))))); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_4);
- __pyx_t_6 = PyNumber_InPlaceAdd(__pyx_v_beta_add, __pyx_t_4); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 90; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = PyNumber_InPlaceAdd(__pyx_v_beta_add, __pyx_t_4); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 94; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_6);
__Pyx_DECREF(__pyx_t_4); __pyx_t_4 = 0;
__Pyx_DECREF_SET(__pyx_v_beta_add, __pyx_t_6);
__pyx_t_6 = 0;
- /* "ml.pyx":92
- * beta_add += roots * log(beta) + (n_nodes-roots) * log(1 - beta)
+ /* "ml.pyx":96
+ * beta_add += roots * log(beta) + (n_nodes-roots) * log(1. - beta)
*
* if beta_add > max_beta_add: # <<<<<<<<<<<<<<
* max_beta = beta
* max_roots = roots
*/
- __pyx_t_6 = PyObject_RichCompare(__pyx_v_beta_add, __pyx_v_max_beta_add, Py_GT); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __pyx_t_28 = __Pyx_PyObject_IsTrue(__pyx_t_6); if (unlikely(__pyx_t_28 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 92; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = PyObject_RichCompare(__pyx_v_beta_add, __pyx_v_max_beta_add, Py_GT); __Pyx_XGOTREF(__pyx_t_6); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 96; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_28 = __Pyx_PyObject_IsTrue(__pyx_t_6); if (unlikely(__pyx_t_28 < 0)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 96; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
if (__pyx_t_28) {
- /* "ml.pyx":93
+ /* "ml.pyx":97
*
* if beta_add > max_beta_add:
* max_beta = beta # <<<<<<<<<<<<<<
* max_roots = roots
* max_beta_add = beta_add
*/
- __pyx_t_6 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 93; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 97; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_6);
__Pyx_XDECREF_SET(__pyx_v_max_beta, __pyx_t_6);
__pyx_t_6 = 0;
- /* "ml.pyx":94
+ /* "ml.pyx":98
* if beta_add > max_beta_add:
* max_beta = beta
* max_roots = roots # <<<<<<<<<<<<<<
@@ -2729,7 +2876,7 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
*/
__pyx_v_max_roots = __pyx_v_roots;
- /* "ml.pyx":95
+ /* "ml.pyx":99
* max_beta = beta
* max_roots = roots
* max_beta_add = beta_add # <<<<<<<<<<<<<<
@@ -2738,37 +2885,37 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
*/
__Pyx_INCREF(__pyx_v_beta_add);
__Pyx_DECREF_SET(__pyx_v_max_beta_add, __pyx_v_beta_add);
- goto __pyx_L15;
+ goto __pyx_L21;
}
- __pyx_L15:;
+ __pyx_L21:;
- /* "ml.pyx":82
+ /* "ml.pyx":86
* max_beta_add = float('-inf')
* # iterate over all victim nodes to find the optimal threshold
- * for beta in np.arange(0.001, .1, .001): # <<<<<<<<<<<<<<
+ * for beta in [0.13]:#np.arange(0.001, .2, .002): # <<<<<<<<<<<<<<
* thresh = log(beta/(1.-beta))
* # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh])
*/
}
__Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
- /* "ml.pyx":98
+ /* "ml.pyx":102
* # print 'beta:', max_beta, 'add:', max_beta_add, 'roots:', max_roots
*
* ll += max_beta_add # <<<<<<<<<<<<<<
* roots = max_roots
* beta = max_beta
*/
- __pyx_t_5 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 98; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_5 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_5);
- __pyx_t_6 = PyNumber_InPlaceAdd(__pyx_t_5, __pyx_v_max_beta_add); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 98; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = PyNumber_InPlaceAdd(__pyx_t_5, __pyx_v_max_beta_add); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_6);
__Pyx_DECREF(__pyx_t_5); __pyx_t_5 = 0;
- __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_t_6); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 98; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_t_6); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_DECREF(__pyx_t_6); __pyx_t_6 = 0;
- __pyx_v_ll = __pyx_t_22;
+ __pyx_v_ll = __pyx_t_24;
- /* "ml.pyx":99
+ /* "ml.pyx":103
*
* ll += max_beta_add
* roots = max_roots # <<<<<<<<<<<<<<
@@ -2777,30 +2924,30 @@ static PyObject *__pyx_pf_2ml_ml(CYTHON_UNUSED PyObject *__pyx_self, PyObject *_
*/
__pyx_v_roots = __pyx_v_max_roots;
- /* "ml.pyx":100
+ /* "ml.pyx":104
* ll += max_beta_add
* roots = max_roots
* beta = max_beta # <<<<<<<<<<<<<<
* # print n_nodes, n_roots, n_victims, max_i, roots
* return (beta, roots, ll)
*/
- if (unlikely(!__pyx_v_max_beta)) { __Pyx_RaiseUnboundLocalError("max_beta"); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L1_error;} }
- __pyx_t_22 = __pyx_PyFloat_AsDouble(__pyx_v_max_beta); if (unlikely((__pyx_t_22 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 100; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __pyx_v_beta = __pyx_t_22;
+ if (unlikely(!__pyx_v_max_beta)) { __Pyx_RaiseUnboundLocalError("max_beta"); {__pyx_filename = __pyx_f[0]; __pyx_lineno = 104; __pyx_clineno = __LINE__; goto __pyx_L1_error;} }
+ __pyx_t_24 = __pyx_PyFloat_AsDouble(__pyx_v_max_beta); if (unlikely((__pyx_t_24 == (npy_double)-1) && PyErr_Occurred())) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 104; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_v_beta = __pyx_t_24;
- /* "ml.pyx":102
+ /* "ml.pyx":106
* beta = max_beta
* # print n_nodes, n_roots, n_victims, max_i, roots
* return (beta, roots, ll) # <<<<<<<<<<<<<<
*/
__Pyx_XDECREF(__pyx_r);
- __pyx_t_6 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_6 = PyFloat_FromDouble(__pyx_v_beta); if (unlikely(!__pyx_t_6)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_6);
- __pyx_t_5 = __Pyx_PyInt_From_int(__pyx_v_roots); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_5 = __Pyx_PyInt_From_int(__pyx_v_roots); if (unlikely(!__pyx_t_5)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_5);
- __pyx_t_4 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_4 = PyFloat_FromDouble(__pyx_v_ll); if (unlikely(!__pyx_t_4)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_4);
- __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 102; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_t_3 = PyTuple_New(3); if (unlikely(!__pyx_t_3)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 106; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_t_3);
PyTuple_SET_ITEM(__pyx_t_3, 0, __pyx_t_6);
__Pyx_GIVEREF(__pyx_t_6);
@@ -5127,7 +5274,6 @@ static __Pyx_StringTabEntry __pyx_string_tab[] = {
{&__pyx_n_s_ValueError, __pyx_k_ValueError, sizeof(__pyx_k_ValueError), 0, 0, 1, 1},
{&__pyx_n_s_age, __pyx_k_age, sizeof(__pyx_k_age), 0, 0, 1, 1},
{&__pyx_n_s_alpha, __pyx_k_alpha, sizeof(__pyx_k_alpha), 0, 0, 1, 1},
- {&__pyx_n_s_arange, __pyx_k_arange, sizeof(__pyx_k_arange), 0, 0, 1, 1},
{&__pyx_n_s_args, __pyx_k_args, sizeof(__pyx_k_args), 0, 0, 1, 1},
{&__pyx_n_s_beta, __pyx_k_beta, sizeof(__pyx_k_beta), 0, 0, 1, 1},
{&__pyx_n_s_beta_add, __pyx_k_beta_add, sizeof(__pyx_k_beta_add), 0, 0, 1, 1},
@@ -5202,14 +5348,14 @@ static int __Pyx_InitCachedConstants(void) {
__Pyx_RefNannyDeclarations
__Pyx_RefNannySetupContext("__Pyx_InitCachedConstants", 0);
- /* "ml.pyx":82
+ /* "ml.pyx":86
* max_beta_add = float('-inf')
* # iterate over all victim nodes to find the optimal threshold
- * for beta in np.arange(0.001, .1, .001): # <<<<<<<<<<<<<<
+ * for beta in [0.13]:#np.arange(0.001, .2, .002): # <<<<<<<<<<<<<<
* thresh = log(beta/(1.-beta))
* # print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh])
*/
- __pyx_tuple_ = PyTuple_Pack(3, __pyx_float_0_001, __pyx_float__1, __pyx_float__001); if (unlikely(!__pyx_tuple_)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 82; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_tuple_ = PyTuple_Pack(1, __pyx_float_0_13); if (unlikely(!__pyx_tuple_)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 86; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
__Pyx_GOTREF(__pyx_tuple_);
__Pyx_GIVEREF(__pyx_tuple_);
@@ -5299,9 +5445,7 @@ static int __Pyx_InitCachedConstants(void) {
static int __Pyx_InitGlobals(void) {
if (__Pyx_InitStrings(__pyx_string_tab) < 0) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;};
- __pyx_float__1 = PyFloat_FromDouble(.1); if (unlikely(!__pyx_float__1)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __pyx_float__001 = PyFloat_FromDouble(.001); if (unlikely(!__pyx_float__001)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
- __pyx_float_0_001 = PyFloat_FromDouble(0.001); if (unlikely(!__pyx_float_0_001)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
+ __pyx_float_0_13 = PyFloat_FromDouble(0.13); if (unlikely(!__pyx_float_0_13)) {__pyx_filename = __pyx_f[0]; __pyx_lineno = 1; __pyx_clineno = __LINE__; goto __pyx_L1_error;}
return 0;
__pyx_L1_error:;
return -1;
diff --git a/experiments/ml.pyx b/experiments/ml.pyx
index 67b561c..e1ce4cf 100644
--- a/experiments/ml.pyx
+++ b/experiments/ml.pyx
@@ -15,8 +15,8 @@ cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
cdef DTYPE_t structural, temporal, result
structural = delta ** dist
# structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta)
- # temporal = exp(-alpha*dt) * (exp(alpha)-1)
- temporal = 1 - exp(-alpha*dt)
+ temporal = exp(-alpha*dt) * (exp(alpha)-1.)
+ # temporal = 1 - exp(-alpha*dt)
if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR'
# temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01
result = log(structural * temporal)
@@ -42,7 +42,7 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
DTYPE_t beta, ll
list parents, failures, successes
n_roots, n_victims = len(root_victims), len(victims)
- n_nodes = 11270
+ n_nodes = 100
cdef:
np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE)
np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE)
@@ -62,12 +62,16 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
probs[i] = max(s - failures[l] for l, s in enumerate(successes))
# loop through non-victims
- # for i, parents in enumerate(non_victims.itervalues()):
- # # for each non victim node, compute the probability that all its
- # # parents fail to infect it
- # failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3)
- # for (dist, dt, w1, w2, w3) in parents]
- # probs_nv[i] = sum(failures)
+ for i, parents in enumerate(non_victims.itervalues()):
+ # for each non victim node, compute the probability that all its
+ # parents fail to infect it
+ failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3)
+ for (dist, dt, w1, w2, w3) in parents]
+ probs_nv[i] = sum(failures)
+
+ # print successes
+ # print failures
+ # print probs
# calculate log likelihood
# probs.sort(); probs = probs[::-1] # sort probs in descending order
@@ -79,7 +83,7 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
# print 'probs', probs
max_beta_add = float('-inf')
# iterate over all victim nodes to find the optimal threshold
- for beta in np.arange(0.001, .1, .001):
+ for beta in [0.13]:#np.arange(0.001, .2, .002):
thresh = log(beta/(1.-beta))
# print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh])
roots = n_roots + len(probs[probs<thresh])
@@ -87,7 +91,7 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
# add probability for realized edges and subtract probability these edges fail
beta_add = (probs[probs>=thresh]).sum()
# add probability for the seeds and non-seeds
- beta_add += roots * log(beta) + (n_nodes-roots) * log(1 - beta)
+ beta_add += roots * log(beta) + (n_nodes-roots) * log(1. - beta)
if beta_add > max_beta_add:
max_beta = beta
diff --git a/experiments/ml.so b/experiments/ml.so
index df7f087..da6fb1f 100755
--- a/experiments/ml.so
+++ b/experiments/ml.so
Binary files differ
diff --git a/experiments/out.log b/experiments/out.log
index 7a1f0ab..6b67669 100644
--- a/experiments/out.log
+++ b/experiments/out.log
@@ -1,50 +1,2500 @@
-0.01 1e-10 0.099 11270 -26063.4012842
-0.01 1e-09 0.099 11270 -26063.4012942
-0.01 1e-08 0.099 11270 -26063.4013936
-0.01 1e-07 0.099 11270 -26063.4023876
-0.01 1e-06 0.099 11270 -26063.4123283
-0.01 1e-05 0.099 11270 -26063.5117423
-0.01 0.0001 0.099 11270 -26064.5065933
-0.01 0.001 0.099 11270 -26074.5266231
-0.01 0.01 0.099 11270 -26182.2819892
-0.01 0.1 0.099 8015 -28388.8683687
-0.1 1e-10 0.099 11270 -26063.4012843
-0.1 1e-09 0.099 11270 -26063.4012953
-0.1 1e-08 0.099 11270 -26063.4014049
-0.1 1e-07 0.099 11270 -26063.4025006
-0.1 1e-06 0.099 11270 -26063.4134578
-0.1 1e-05 0.099 11270 -26063.5230378
-0.1 0.0001 0.099 11270 -26064.6196132
-0.1 0.001 0.099 11270 -26075.6633592
-0.1 0.01 0.099 11270 -26194.3360771
-0.1 0.1 0.099 6661 -28593.8725864
-1.0 1e-10 0.099 11270 -26063.4012843
-1.0 1e-09 0.099 11270 -26063.4012954
-1.0 1e-08 0.099 11270 -26063.4014062
-1.0 1e-07 0.099 11270 -26063.4025142
-1.0 1e-06 0.099 11270 -26063.413594
-1.0 1e-05 0.099 11270 -26063.5244003
-1.0 0.0001 0.099 11270 -26064.6332464
-1.0 0.001 0.099 11270 -26075.8004629
-1.0 0.01 0.099 11270 -26195.7880597
-1.0 0.1 0.099 6497 -28618.0350966
-10.0 1e-10 0.099 11270 -26063.4012843
-10.0 1e-09 0.099 11270 -26063.4012954
-10.0 1e-08 0.099 11270 -26063.4014063
-10.0 1e-07 0.099 11270 -26063.4025152
-10.0 1e-06 0.099 11270 -26063.4136042
-10.0 1e-05 0.099 11270 -26063.5245019
-10.0 0.0001 0.099 11270 -26064.6342626
-10.0 0.001 0.099 11270 -26075.8106807
-10.0 0.01 0.099 11270 -26195.896108
-10.0 0.1 0.099 6478 -28619.7022745
-100.0 1e-10 0.099 11270 -26063.4012843
-100.0 1e-09 0.099 11270 -26063.4012954
-100.0 1e-08 0.099 11270 -26063.4014063
-100.0 1e-07 0.099 11270 -26063.4025152
-100.0 1e-06 0.099 11270 -26063.4136042
-100.0 1e-05 0.099 11270 -26063.5245019
-100.0 0.0001 0.099 11270 -26064.6342627
-100.0 0.001 0.099 11270 -26075.8106816
-100.0 0.01 0.099 11270 -26195.8961172
-100.0 0.1 0.099 6478 -28619.7022344
+0.001 0.001 0.13 20 -52.0832474113
+0.001 0.00112465782212 0.13 20 -52.1005125537
+0.001 0.00126485521686 0.13 20 -52.1199509282
+0.001 0.00142252931349 0.13 20 -52.1418390225
+0.001 0.00159985871961 0.13 20 -52.1664892743
+0.001 0.00179929362329 0.13 20 -52.1942549491
+0.001 0.00202358964773 0.13 20 -52.225535731
+0.001 0.00227584592607 0.13 20 -52.2607841467
+0.001 0.0025595479227 0.13 20 -52.3005129593
+0.001 0.00287861559235 0.13 20 -52.3453037031
+0.001 0.00323745754282 0.13 20 -52.3958165575
+0.001 0.00364103194931 0.13 20 -52.4528018042
+0.001 0.00409491506238 0.13 20 -52.51711316
+0.001 0.00460537825582 0.13 20 -52.589723343
+0.001 0.00517947467923 0.13 20 -52.6717423073
+0.001 0.00582513671247 0.13 20 -52.7644386796
+0.001 0.0065512855686 0.13 20 -52.8692650573
+0.001 0.00736795455966 0.13 20 -52.9878879795
+0.001 0.00828642772855 0.13 20 -53.1222235829
+0.001 0.00931939576234 0.13 20 -53.2744802023
+0.001 0.0104811313415 0.13 20 -53.447209494
+0.001 0.0117876863479 0.13 20 -53.6433680699
+0.001 0.0132571136559 0.13 20 -53.8663921501
+0.001 0.0149097165718 0.13 20 -54.120288421
+0.001 0.0167683293681 0.13 20 -54.4097451574
+0.001 0.0188586327877 0.13 20 -54.7402688054
+0.001 0.0212095088792 0.13 20 -55.1183527117
+0.001 0.0238534400643 0.13 20 -55.5516866311
+0.001 0.0268269579528 0.13 20 -56.0494182218
+0.001 0.0301711481053 0.13 20 -56.6224811403
+0.001 0.033932217719 0.13 20 -57.2840088874
+0.001 0.0381621340795 0.13 20 -58.0498596248
+0.001 0.0429193426013 0.13 20 -58.9392853408
+0.001 0.0482695743768 0.13 20 -59.9757897802
+0.001 0.0542867543932 0.13 20 -61.1882345479
+0.001 0.0610540229659 0.13 20 -62.6122733035
+0.001 0.0686648845004 0.13 20 -64.2922221645
+0.001 0.0772244994584 0.13 20 -66.2835134819
+0.001 0.0868511373751 0.13 20 -68.6559345702
+0.001 0.0976778110089 0.13 20 -71.4979294263
+0.001 0.109854114199 0.13 20 -74.9223497807
+0.001 0.123548288826 0.13 20 -79.0741968175
+0.001 0.138949549437 0.13 20 -84.14111926
+0.001 0.156270697655 0.13 20 -90.3677628212
+0.001 0.175751062485 0.13 20 -98.0755574422
+0.001 0.19765980717 0.13 20 -107.690276966
+0.001 0.222299648253 0.13 20 -119.780873153
+0.001 0.250011038262 0.13 20 -135.114960731
+0.001 0.281176869797 0.13 20 -154.739447493
+0.001 0.316227766017 0.13 20 -180.100201802
+0.00114599750858 0.001 0.13 20 -52.0875591672
+0.00114599750858 0.00112465782212 0.13 20 -52.1053646041
+0.00114599750858 0.00126485521686 0.13 20 -52.1254113682
+0.00114599750858 0.00142252931349 0.13 20 -52.147984633
+0.00114599750858 0.00159985871961 0.13 20 -52.1734066576
+0.00114599750858 0.00179929362329 0.13 20 -52.2020418193
+0.00114599750858 0.00202358964773 0.13 20 -52.2343023842
+0.00114599750858 0.00227584592607 0.13 20 -52.2706551355
+0.00114599750858 0.0025595479227 0.13 20 -52.3116290059
+0.00114599750858 0.00287861559235 0.13 20 -52.3578238865
+0.00114599750858 0.00323745754282 0.13 20 -52.4099208198
+0.00114599750858 0.00364103194931 0.13 20 -52.4686938272
+0.00114599750858 0.00409491506238 0.13 20 -52.5350236761
+0.00114599750858 0.00460537825582 0.13 20 -52.6099139521
+0.00114599750858 0.00517947467923 0.13 20 -52.6945098905
+0.00114599750858 0.00582513671247 0.13 20 -52.790120517
+0.00114599750858 0.0065512855686 0.13 20 -52.8982447782
+0.00114599750858 0.00736795455966 0.13 20 -53.020602505
+0.00114599750858 0.00828642772855 0.13 20 -53.1591712517
+0.00114599750858 0.00931939576234 0.13 20 -53.3162303172
+0.00114599750858 0.0104811313415 0.13 20 -53.4944135799
+0.00114599750858 0.0117876863479 0.13 20 -53.6967732037
+0.00114599750858 0.0132571136559 0.13 20 -53.926856811
+0.00114599750858 0.0149097165718 0.13 20 -54.1888014204
+0.00114599750858 0.0167683293681 0.13 20 -54.4874483518
+0.00114599750858 0.0188586327877 0.13 20 -54.8284844781
+0.00114599750858 0.0212095088792 0.13 20 -55.2186167453
+0.00114599750858 0.0238534400643 0.13 20 -55.6657889016
+0.00114599750858 0.0268269579528 0.13 20 -56.1794520421
+0.00114599750858 0.0301711481053 0.13 20 -56.7709041065
+0.00114599750858 0.033932217719 0.13 20 -57.4537181694
+0.00114599750858 0.0381621340795 0.13 20 -58.2442856537
+0.00114599750858 0.0429193426013 0.13 20 -59.1625090628
+0.00114599750858 0.0482695743768 0.13 20 -60.2326902681
+0.00114599750858 0.0542867543932 0.13 20 -61.4846759586
+0.00114599750858 0.0610540229659 0.13 20 -62.9553431389
+0.00114599750858 0.0686648845004 0.13 20 -64.6905368626
+0.00114599750858 0.0772244994584 0.13 20 -66.7476129599
+0.00114599750858 0.0868511373751 0.13 20 -69.1987951204
+0.00114599750858 0.0976778110089 0.13 20 -72.135635264
+0.00114599750858 0.109854114199 0.13 20 -75.6749789879
+0.00114599750858 0.123548288826 0.13 20 -79.966999556
+0.00114599750858 0.138949549437 0.13 20 -85.2060982908
+0.00114599750858 0.156270697655 0.13 20 -91.6458138505
+0.00114599750858 0.175751062485 0.13 20 -99.619398252
+0.00114599750858 0.19765980717 0.13 20 -109.568504189
+0.00114599750858 0.222299648253 0.13 20 -122.083659148
+0.00114599750858 0.250011038262 0.13 20 -137.962185888
+0.00114599750858 0.281176869797 0.13 20 -158.292541375
+0.00114599750858 0.316227766017 0.13 20 -184.579809615
+0.00131331028968 0.001 0.13 20 -52.0910702252
+0.00131331028968 0.00112465782212 0.13 20 -52.1093156476
+0.00131331028968 0.00126485521686 0.13 20 -52.1298578563
+0.00131331028968 0.00142252931349 0.13 20 -52.1529891007
+0.00131331028968 0.00159985871961 0.13 20 -52.1790396411
+0.00131331028968 0.00179929362329 0.13 20 -52.2083829081
+0.00131331028968 0.00202358964773 0.13 20 -52.2414414189
+0.00131331028968 0.00227584592607 0.13 20 -52.278693574
+0.00131331028968 0.0025595479227 0.13 20 -52.3206814827
+0.00131331028968 0.00287861559235 0.13 20 -52.3680199968
+0.00131331028968 0.00323745754282 0.13 20 -52.4214071636
+0.00131331028968 0.00364103194931 0.13 20 -52.4816363569
+0.00131331028968 0.00409491506238 0.13 20 -52.5496103971
+0.00131331028968 0.00460537825582 0.13 20 -52.626358039
+0.00131331028968 0.00517947467923 0.13 20 -52.7130532903
+0.00131331028968 0.00582513671247 0.13 20 -52.8110381278
+0.00131331028968 0.0065512855686 0.13 20 -52.9218493103
+0.00131331028968 0.00736795455966 0.13 20 -53.0472501527
+0.00131331028968 0.00828642772855 0.13 20 -53.1892683353
+0.00131331028968 0.00931939576234 0.13 20 -53.3502410877
+0.00131331028968 0.0104811313415 0.13 20 -53.532869427
+0.00131331028968 0.0117876863479 0.13 20 -53.7402835618
+0.00131331028968 0.0132571136559 0.13 20 -53.9761221327
+0.00131331028968 0.0149097165718 0.13 20 -54.2446286767
+0.00131331028968 0.0167683293681 0.13 20 -54.5507696374
+0.00131331028968 0.0188586327877 0.13 20 -54.9003794504
+0.00131331028968 0.0212095088792 0.13 20 -55.3003398218
+0.00131331028968 0.0238534400643 0.13 20 -55.7588023917
+0.00131331028968 0.0268269579528 0.13 20 -56.2854667209
+0.00131331028968 0.0301711481053 0.13 20 -56.8919291684
+0.00131331028968 0.033932217719 0.13 20 -57.5921230701
+0.00131331028968 0.0381621340795 0.13 20 -58.4028771003
+0.00131331028968 0.0429193426013 0.13 20 -59.3446274166
+0.00131331028968 0.0482695743768 0.13 20 -60.4423309699
+0.00131331028968 0.0542867543932 0.13 20 -61.7266433958
+0.00131331028968 0.0610540229659 0.13 20 -63.2354468411
+0.00131331028968 0.0686648845004 0.13 20 -65.015843274
+0.00131331028968 0.0772244994584 0.13 20 -67.1267706788
+0.00131331028968 0.0868511373751 0.13 20 -69.6424579445
+0.00131331028968 0.0976778110089 0.13 20 -72.657016427
+0.00131331028968 0.109854114199 0.13 20 -76.2905827992
+0.00131331028968 0.123548288826 0.13 20 -80.6975950572
+0.00131331028968 0.138949549437 0.13 20 -86.0780263122
+0.00131331028968 0.156270697655 0.13 20 -92.6927584249
+0.00131331028968 0.175751062485 0.13 20 -100.884812969
+0.00131331028968 0.19765980717 0.13 20 -111.108975966
+0.00131331028968 0.222299648253 0.13 20 -123.973637343
+0.00131331028968 0.250011038262 0.13 20 -140.30074227
+0.00131331028968 0.281176869797 0.13 20 -161.213229185
+0.00131331028968 0.316227766017 0.13 20 -188.265402555
+0.00150505031997 0.001 0.13 20 -52.0938240958
+0.00150505031997 0.00112465782212 0.13 20 -52.1124146374
+0.00150505031997 0.00126485521686 0.13 20 -52.1333454722
+0.00150505031997 0.00142252931349 0.13 20 -52.1569144017
+0.00150505031997 0.00159985871961 0.13 20 -52.183457965
+0.00150505031997 0.00179929362329 0.13 20 -52.2133566977
+0.00150505031997 0.00202358964773 0.13 20 -52.2470411623
+0.00150505031997 0.00227584592607 0.13 20 -52.2849988777
+0.00150505031997 0.0025595479227 0.13 20 -52.3277822964
+0.00150505031997 0.00287861559235 0.13 20 -52.3760180152
+0.00150505031997 0.00323745754282 0.13 20 -52.4304174323
+0.00150505031997 0.00364103194931 0.13 20 -52.4917891176
+0.00150505031997 0.00409491506238 0.13 20 -52.5610532105
+0.00150505031997 0.00460537825582 0.13 20 -52.6392582351
+0.00150505031997 0.00517947467923 0.13 20 -52.7276008021
+0.00150505031997 0.00582513671247 0.13 20 -52.8274487789
+0.00150505031997 0.0065512855686 0.13 20 -52.9403686398
+0.00150505031997 0.00736795455966 0.13 20 -53.0681578803
+0.00150505031997 0.00828642772855 0.13 20 -53.2128835911
+0.00150505031997 0.00931939576234 0.13 20 -53.3769285605
+0.00150505031997 0.0104811313415 0.13 20 -53.5630466199
+0.00150505031997 0.0117876863479 0.13 20 -53.7744293898
+0.00150505031997 0.0132571136559 0.13 20 -54.0147871538
+0.00150505031997 0.0149097165718 0.13 20 -54.2884473214
+0.00150505031997 0.0167683293681 0.13 20 -54.6004748942
+0.00150505031997 0.0188586327877 0.13 20 -54.9568205856
+0.00150505031997 0.0212095088792 0.13 20 -55.3645038665
+0.00150505031997 0.0238534400643 0.13 20 -55.8318403305
+0.00150505031997 0.0268269579528 0.13 20 -56.3687255782
+0.00150505031997 0.0301711481053 0.13 20 -56.9869915326
+0.00150505031997 0.033932217719 0.13 20 -57.7008560482
+0.00150505031997 0.0381621340795 0.13 20 -58.5274932959
+0.00150505031997 0.0429193426013 0.13 20 -59.4877613228
+0.00150505031997 0.0482695743768 0.13 20 -60.60713524
+0.00150505031997 0.0542867543932 0.13 20 -61.9169109017
+0.00150505031997 0.0610540229659 0.13 20 -63.4557663901
+0.00150505031997 0.0686648845004 0.13 20 -65.2717995426
+0.00150505031997 0.0772244994584 0.13 20 -67.4252026248
+0.00150505031997 0.0868511373751 0.13 20 -69.9917951071
+0.00150505031997 0.0976778110089 0.13 20 -73.0677197514
+0.00150505031997 0.109854114199 0.13 20 -76.7757268704
+0.00150505031997 0.123548288826 0.13 20 -81.2736433398
+0.00150505031997 0.138949549437 0.13 20 -86.7658723992
+0.00150505031997 0.156270697655 0.13 20 -93.5191379634
+0.00150505031997 0.175751062485 0.13 20 -101.884238663
+0.00150505031997 0.19765980717 0.13 20 -112.326421675
+0.00150505031997 0.222299648253 0.13 20 -125.468313889
+0.00150505031997 0.250011038262 0.13 20 -142.151498275
+0.00150505031997 0.281176869797 0.13 20 -163.526433825
+0.00150505031997 0.316227766017 0.13 20 -191.186740753
+0.00172478391698 0.001 0.13 20 -52.0959088489
+0.00172478391698 0.00112465782212 0.13 20 -52.1147606719
+0.00172478391698 0.00126485521686 0.13 20 -52.1359857305
+0.00172478391698 0.00142252931349 0.13 20 -52.1598860315
+0.00172478391698 0.00159985871961 0.13 20 -52.1868028697
+0.00172478391698 0.00179929362329 0.13 20 -52.2171221625
+0.00172478391698 0.00202358964773 0.13 20 -52.2512805676
+0.00172478391698 0.00227584592607 0.13 20 -52.2897725119
+0.00172478391698 0.0025595479227 0.13 20 -52.3331582853
+0.00172478391698 0.00287861559235 0.13 20 -52.3820733843
+0.00172478391698 0.00323745754282 0.13 20 -52.4372393258
+0.00172478391698 0.00364103194931 0.13 20 -52.4994761978
+0.00172478391698 0.00409491506238 0.13 20 -52.5697172695
+0.00172478391698 0.00460537825582 0.13 20 -52.6490260543
+0.00172478391698 0.00517947467923 0.13 20 -52.738616304
+0.00172478391698 0.00582513671247 0.13 20 -52.8398755244
+0.00172478391698 0.0065512855686 0.13 20 -52.9543927344
+0.00172478391698 0.00736795455966 0.13 20 -53.0839913679
+0.00172478391698 0.00828642772855 0.13 20 -53.2307684304
+0.00172478391698 0.00931939576234 0.13 20 -53.3971413019
+0.00172478391698 0.0104811313415 0.13 20 -53.5859039268
+0.00172478391698 0.0117876863479 0.13 20 -53.8002945844
+0.00172478391698 0.0132571136559 0.13 20 -54.0440780095
+0.00172478391698 0.0149097165718 0.13 20 -54.3216453823
+0.00172478391698 0.0167683293681 0.13 20 -54.6381366714
+0.00172478391698 0.0188586327877 0.13 20 -54.9995910741
+0.00172478391698 0.0212095088792 0.13 20 -55.4131329447
+0.00172478391698 0.0238534400643 0.13 20 -55.8872027585
+0.00172478391698 0.0268269579528 0.13 20 -56.4318455134
+0.00172478391698 0.0301711481053 0.13 20 -57.0590727458
+0.00172478391698 0.033932217719 0.13 20 -57.7833193699
+0.00172478391698 0.0381621340795 0.13 20 -58.6220232873
+0.00172478391698 0.0429193426013 0.13 20 -59.5963647781
+0.00172478391698 0.0482695743768 0.13 20 -60.7322149548
+0.00172478391698 0.0542867543932 0.13 20 -62.0613592545
+0.00172478391698 0.0610540229659 0.13 20 -63.6230847981
+0.00172478391698 0.0686648845004 0.13 20 -65.4662519231
+0.00172478391698 0.0772244994584 0.13 20 -67.652013849
+0.00172478391698 0.0868511373751 0.13 20 -70.257409403
+0.00172478391698 0.0976778110089 0.13 20 -73.3801395848
+0.00172478391698 0.109854114199 0.13 20 -77.1449607338
+0.00172478391698 0.123548288826 0.13 20 -81.7123022169
+0.00172478391698 0.138949549437 0.13 20 -87.2899711686
+0.00172478391698 0.156270697655 0.13 20 -94.1491823894
+0.00172478391698 0.175751062485 0.13 20 -102.646715366
+0.00172478391698 0.19765980717 0.13 20 -113.255865097
+0.00172478391698 0.222299648253 0.13 20 -126.610213923
+0.00172478391698 0.250011038262 0.13 20 -143.566458693
+0.00172478391698 0.281176869797 0.13 20 -165.296240123
+0.00172478391698 0.316227766017 0.13 20 -193.423436243
+0.0019765980717 0.001 0.13 20 -52.0974431014
+0.0019765980717 0.00112465782212 0.13 20 -52.1164872261
+0.0019765980717 0.00126485521686 0.13 20 -52.1379288354
+0.0019765980717 0.00142252931349 0.13 20 -52.1620730331
+0.0019765980717 0.00159985871961 0.13 20 -52.1892646158
+0.0019765980717 0.00179929362329 0.13 20 -52.2198934645
+0.0019765980717 0.00202358964773 0.13 20 -52.2544007263
+0.0019765980717 0.00227584592607 0.13 20 -52.2932859164
+0.0019765980717 0.0025595479227 0.13 20 -52.3371150983
+0.0019765980717 0.00287861559235 0.13 20 -52.3865303261
+0.0019765980717 0.00323745754282 0.13 20 -52.442260573
+0.0019765980717 0.00364103194931 0.13 20 -52.5051344158
+0.0019765980717 0.00409491506238 0.13 20 -52.5760948021
+0.0019765980717 0.00460537825582 0.13 20 -52.6562162965
+0.0019765980717 0.00517947467923 0.13 20 -52.7467252916
+0.0019765980717 0.00582513671247 0.13 20 -52.8490237782
+0.0019765980717 0.0065512855686 0.13 20 -52.9647174087
+0.0019765980717 0.00736795455966 0.13 20 -53.0956487592
+0.0019765980717 0.00828642772855 0.13 20 -53.2439369193
+0.0019765980717 0.00931939576234 0.13 20 -53.4120248137
+0.0019765980717 0.0104811313415 0.13 20 -53.6027360197
+0.0019765980717 0.0117876863479 0.13 20 -53.8193432981
+0.0019765980717 0.0132571136559 0.13 20 -54.0656516414
+0.0019765980717 0.0149097165718 0.13 20 -54.3460993981
+0.0019765980717 0.0167683293681 0.13 20 -54.6658820136
+0.0019765980717 0.0188586327877 0.13 20 -55.0311041983
+0.0019765980717 0.0212095088792 0.13 20 -55.4489680031
+0.0019765980717 0.0238534400643 0.13 20 -55.9280064676
+0.0019765980717 0.0268269579528 0.13 20 -56.4783753921
+0.0019765980717 0.0301711481053 0.13 20 -57.1122196085
+0.0019765980717 0.033932217719 0.13 20 -57.8441352223
+0.0019765980717 0.0381621340795 0.13 20 -58.6917561165
+0.0019765980717 0.0429193426013 0.13 20 -59.6765021931
+0.0019765980717 0.0482695743768 0.13 20 -60.8245392525
+0.0019765980717 0.0542867543932 0.13 20 -62.1680173223
+0.0019765980717 0.0610540229659 0.13 20 -63.7466774023
+0.0019765980717 0.0686648845004 0.13 20 -65.6099484881
+0.0019765980717 0.0772244994584 0.13 20 -67.8197009751
+0.0019765980717 0.0868511373751 0.13 20 -70.4538843554
+0.0019765980717 0.0976778110089 0.13 20 -73.6113641651
+0.0019765980717 0.109854114199 0.13 20 -77.4183968755
+0.0019765980717 0.123548288826 0.13 20 -82.037359141
+0.0019765980717 0.138949549437 0.13 20 -87.6786062844
+0.0019765980717 0.156270697655 0.13 20 -94.6167163515
+0.0019765980717 0.175751062485 0.13 20 -103.212949114
+0.0019765980717 0.19765980717 0.13 20 -113.94662887
+0.0019765980717 0.222299648253 0.13 20 -127.459544826
+0.0019765980717 0.250011038262 0.13 20 -144.619711933
+0.0019765980717 0.281176869797 0.13 20 -166.614622608
+0.0019765980717 0.316227766017 0.13 20 -195.090775578
+0.00226517646564 0.001 0.13 20 -52.0985576278
+0.00226517646564 0.00112465782212 0.13 20 -52.1177414577
+0.00226517646564 0.00126485521686 0.13 20 -52.1393403923
+0.00226517646564 0.00142252931349 0.13 20 -52.1636617859
+0.00226517646564 0.00159985871961 0.13 20 -52.1910529812
+0.00226517646564 0.00179929362329 0.13 20 -52.2219067407
+0.00226517646564 0.00202358964773 0.13 20 -52.2566674753
+0.00226517646564 0.00227584592607 0.13 20 -52.2958384008
+0.00226517646564 0.0025595479227 0.13 20 -52.3399897796
+0.00226517646564 0.00287861559235 0.13 20 -52.3897684354
+0.00226517646564 0.00323745754282 0.13 20 -52.4459087657
+0.00226517646564 0.00364103194931 0.13 20 -52.5092455242
+0.00226517646564 0.00409491506238 0.13 20 -52.5807287021
+0.00226517646564 0.00460537825582 0.13 20 -52.6614409083
+0.00226517646564 0.00517947467923 0.13 20 -52.752617739
+0.00226517646564 0.00582513671247 0.13 20 -52.8556717347
+0.00226517646564 0.0065512855686 0.13 20 -52.972220665
+0.00226517646564 0.00736795455966 0.13 20 -53.104121056
+0.00226517646564 0.00828642772855 0.13 20 -53.2535080959
+0.00226517646564 0.00931939576234 0.13 20 -53.4228433386
+0.00226517646564 0.0104811313415 0.13 20 -53.6149719806
+0.00226517646564 0.0117876863479 0.13 20 -53.8331919507
+0.00226517646564 0.0132571136559 0.13 20 -54.0813376392
+0.00226517646564 0.0149097165718 0.13 20 -54.3638818575
+0.00226517646564 0.0167683293681 0.13 20 -54.6860606062
+0.00226517646564 0.0188586327877 0.13 20 -55.0540265167
+0.00226517646564 0.0212095088792 0.13 20 -55.4750385088
+0.00226517646564 0.0238534400643 0.13 20 -55.9576974189
+0.00226517646564 0.0268269579528 0.13 20 -56.512240259
+0.00226517646564 0.0301711481053 0.13 20 -57.1509096325
+0.00226517646564 0.033932217719 0.13 20 -57.8884199688
+0.00226517646564 0.0381621340795 0.13 20 -58.7425491293
+0.00226517646564 0.0429193426013 0.13 20 -59.7348932018
+0.00226517646564 0.0482695743768 0.13 20 -60.8918348452
+0.00226517646564 0.0542867543932 0.13 20 -62.2457926207
+0.00226517646564 0.0610540229659 0.13 20 -63.8368421191
+0.00226517646564 0.0686648845004 0.13 20 -65.7148319074
+0.00226517646564 0.0772244994584 0.13 20 -67.9421619912
+0.00226517646564 0.0868511373751 0.13 20 -70.5974549215
+0.00226517646564 0.0976778110089 0.13 20 -73.7804376124
+0.00226517646564 0.109854114199 0.13 20 -77.6184769587
+0.00226517646564 0.123548288826 0.13 20 -82.2753919652
+0.00226517646564 0.138949549437 0.13 20 -87.9634263939
+0.00226517646564 0.156270697655 0.13 20 -94.9596517098
+0.00226517646564 0.175751062485 0.13 20 -103.628649861
+0.00226517646564 0.19765980717 0.13 20 -114.454215639
+0.00226517646564 0.222299648253 0.13 20 -128.084221008
+0.00226517646564 0.250011038262 0.13 20 -145.395063091
+0.00226517646564 0.281176869797 0.13 20 -167.585958934
+0.00226517646564 0.316227766017 0.13 20 -196.320106367
+0.00259588658613 0.001 0.13 20 -52.0993768424
+0.00259588658613 0.00112465782212 0.13 20 -52.118663369
+0.00259588658613 0.00126485521686 0.13 20 -52.140377955
+0.00259588658613 0.00142252931349 0.13 20 -52.16482961
+0.00259588658613 0.00159985871961 0.13 20 -52.1923675494
+0.00259588658613 0.00179929362329 0.13 20 -52.2233866556
+0.00259588658613 0.00202358964773 0.13 20 -52.2583337406
+0.00259588658613 0.00227584592607 0.13 20 -52.297714743
+0.00259588658613 0.0025595479227 0.13 20 -52.342103015
+0.00259588658613 0.00287861559235 0.13 20 -52.392148891
+0.00259588658613 0.00323745754282 0.13 20 -52.4485907613
+0.00259588658613 0.00364103194931 0.13 20 -52.5122679273
+0.00259588658613 0.00409491506238 0.13 20 -52.5841355669
+0.00259588658613 0.00460537825582 0.13 20 -52.6652822146
+0.00259588658613 0.00517947467923 0.13 20 -52.7569502471
+0.00259588658613 0.00582513671247 0.13 20 -52.8605599792
+0.00259588658613 0.0065512855686 0.13 20 -52.977738113
+0.00259588658613 0.00736795455966 0.13 20 -53.1103514613
+0.00259588658613 0.00828642772855 0.13 20 -53.2605470882
+0.00259588658613 0.00931939576234 0.13 20 -53.430800295
+0.00259588658613 0.0104811313415 0.13 20 -53.6239722394
+0.00259588658613 0.0117876863479 0.13 20 -53.8433794399
+0.00259588658613 0.0132571136559 0.13 20 -54.0928780122
+0.00259588658613 0.0149097165718 0.13 20 -54.3769662499
+0.00259588658613 0.0167683293681 0.13 20 -54.7009101591
+0.00259588658613 0.0188586327877 0.13 20 -55.0708978481
+0.00259588658613 0.0212095088792 0.13 20 -55.4942303677
+0.00259588658613 0.0238534400643 0.13 20 -55.9795588174
+0.00259588658613 0.0268269579528 0.13 20 -56.5371804652
+0.00259588658613 0.0301711481053 0.13 20 -57.1794105164
+0.00259588658613 0.033932217719 0.13 20 -57.9210513404
+0.00259588658613 0.0381621340795 0.13 20 -58.7799879025
+0.00259588658613 0.0429193426013 0.13 20 -59.7779474767
+0.00259588658613 0.0482695743768 0.13 20 -60.9414743514
+0.00259588658613 0.0542867543932 0.13 20 -62.3031874316
+0.00259588658613 0.0610540229659 0.13 20 -63.9034121908
+0.00259588658613 0.0686648845004 0.13 20 -65.7923108664
+0.00259588658613 0.0772244994584 0.13 20 -68.0326798029
+0.00259588658613 0.0868511373751 0.13 20 -70.7036457437
+0.00259588658613 0.0976778110089 0.13 20 -73.90558148
+0.00259588658613 0.109854114199 0.13 20 -77.7666872583
+0.00259588658613 0.123548288826 0.13 20 -82.4518653857
+0.00259588658613 0.138949549437 0.13 20 -88.174778885
+0.00259588658613 0.156270697655 0.13 20 -95.2143740192
+0.00259588658613 0.175751062485 0.13 20 -103.937731229
+0.00259588658613 0.19765980717 0.13 20 -114.83200711
+0.00259588658613 0.222299648253 0.13 20 -128.549645619
+0.00259588658613 0.250011038262 0.13 20 -145.973337905
+0.00259588658613 0.281176869797 0.13 20 -168.311090318
+0.00259588658613 0.316227766017 0.13 20 -197.238587981
+0.00297487956027 0.001 0.13 20 -52.100004519
+0.00297487956027 0.00112465782212 0.13 20 -52.119369736
+0.00297487956027 0.00126485521686 0.13 20 -52.14117294
+0.00297487956027 0.00142252931349 0.13 20 -52.1657244096
+0.00297487956027 0.00159985871961 0.13 20 -52.1933747959
+0.00297487956027 0.00179929362329 0.13 20 -52.2245206061
+0.00297487956027 0.00202358964773 0.13 20 -52.2596104936
+0.00297487956027 0.00227584592607 0.13 20 -52.2991524846
+0.00297487956027 0.0025595479227 0.13 20 -52.3437223009
+0.00297487956027 0.00287861559235 0.13 20 -52.3939729691
+0.00297487956027 0.00323745754282 0.13 20 -52.4506459424
+0.00297487956027 0.00364103194931 0.13 20 -52.5145840107
+0.00297487956027 0.00409491506238 0.13 20 -52.5867463318
+0.00297487956027 0.00460537825582 0.13 20 -52.668225987
+0.00297487956027 0.00517947467923 0.13 20 -52.7602705574
+0.00297487956027 0.00582513671247 0.13 20 -52.8643063265
+0.00297487956027 0.0065512855686 0.13 20 -52.9819668554
+0.00297487956027 0.00736795455966 0.13 20 -53.1151268579
+0.00297487956027 0.00828642772855 0.13 20 -53.2659425226
+0.00297487956027 0.00931939576234 0.13 20 -53.4368997165
+0.00297487956027 0.0104811313415 0.13 20 -53.6308718686
+0.00297487956027 0.0117876863479 0.13 20 -53.8511897958
+0.00297487956027 0.0132571136559 0.13 20 -54.1017263304
+0.00297487956027 0.0149097165718 0.13 20 -54.3869993832
+0.00297487956027 0.0167683293681 0.13 20 -54.7122980711
+0.00297487956027 0.0188586327877 0.13 20 -55.0838378433
+0.00297487956027 0.0212095088792 0.13 20 -55.5089522393
+0.00297487956027 0.0238534400643 0.13 20 -55.9963311437
+0.00297487956027 0.0268269579528 0.13 20 -56.5563183547
+0.00297487956027 0.0301711481053 0.13 20 -57.2012851839
+0.00297487956027 0.033932217719 0.13 20 -57.946102017
+0.00297487956027 0.0381621340795 0.13 20 -58.8087367303
+0.00297487956027 0.0429193426013 0.13 20 -59.8110182463
+0.00297487956027 0.0482695743768 0.13 20 -60.9796162133
+0.00297487956027 0.0542867543932 0.13 20 -62.3473050824
+0.00297487956027 0.0610540229659 0.13 20 -63.9546045405
+0.00297487956027 0.0686648845004 0.13 20 -65.8519208791
+0.00297487956027 0.0772244994584 0.13 20 -68.1023591564
+0.00297487956027 0.0868511373751 0.13 20 -70.7854392654
+0.00297487956027 0.0976778110089 0.13 20 -74.002038163
+0.00297487956027 0.109854114199 0.13 20 -77.8810072586
+0.00297487956027 0.123548288826 0.13 20 -82.5880961113
+0.00297487956027 0.138949549437 0.13 20 -88.3380786367
+0.00297487956027 0.156270697655 0.13 20 -95.4113694732
+0.00297487956027 0.175751062485 0.13 20 -104.177006701
+0.00297487956027 0.19765980717 0.13 20 -115.124781231
+0.00297487956027 0.222299648253 0.13 20 -128.910718554
+0.00297487956027 0.250011038262 0.13 20 -146.422436323
+0.00297487956027 0.281176869797 0.13 20 -168.87481035
+0.00297487956027 0.316227766017 0.13 20 -197.953262692
+0.0034092045644 0.001 0.13 20 -52.1005166074
+0.0034092045644 0.00112465782212 0.13 20 -52.1199460245
+0.0034092045644 0.00126485521686 0.13 20 -52.1418215284
+0.0034092045644 0.00142252931349 0.13 20 -52.1664544331
+0.0034092045644 0.00159985871961 0.13 20 -52.1941965608
+0.0034092045644 0.00179929362329 0.13 20 -52.225445745
+0.0034092045644 0.00202358964773 0.13 20 -52.2606521413
+0.0034092045644 0.00227584592607 0.13 20 -52.3003254793
+0.0034092045644 0.0025595479227 0.13 20 -52.3450434145
+0.0034092045644 0.00287861559235 0.13 20 -52.3954611705
+0.0034092045644 0.00323745754282 0.13 20 -52.4523226998
+0.0034092045644 0.00364103194931 0.13 20 -52.5164736396
+0.0034092045644 0.00409491506238 0.13 20 -52.5888763953
+0.0034092045644 0.00460537825582 0.13 20 -52.6706277597
+0.0034092045644 0.00517947467923 0.13 20 -52.7629795617
+0.0034092045644 0.00582513671247 0.13 20 -52.8673629567
+0.0034092045644 0.0065512855686 0.13 20 -52.9854171055
+0.0034092045644 0.00736795455966 0.13 20 -53.1190231726
+0.0034092045644 0.00828642772855 0.13 20 -53.2703447968
+0.0034092045644 0.00931939576234 0.13 20 -53.4418764736
+0.0034092045644 0.0104811313415 0.13 20 -53.6365016551
+0.0034092045644 0.0117876863479 0.13 20 -53.8575628385
+0.0034092045644 0.0132571136559 0.13 20 -54.1089465156
+0.0034092045644 0.0149097165718 0.13 20 -54.39518663
+0.0034092045644 0.0167683293681 0.13 20 -54.7215911923
+0.0034092045644 0.0188586327877 0.13 20 -55.0943980113
+0.0034092045644 0.0212095088792 0.13 20 -55.5209672048
+0.0034092045644 0.0238534400643 0.13 20 -56.0100204013
+0.0034092045644 0.0268269579528 0.13 20 -56.5719394988
+0.0034092045644 0.0301711481053 0.13 20 -57.2191417756
+0.0034092045644 0.033932217719 0.13 20 -57.9665533738
+0.0034092045644 0.0381621340795 0.13 20 -58.832210182
+0.0034092045644 0.0429193426013 0.13 20 -59.838024566
+0.0034092045644 0.0482695743768 0.13 20 -61.0107691634
+0.0034092045644 0.0542867543932 0.13 20 -62.3833463244
+0.0034092045644 0.0610540229659 0.13 20 -63.9964355746
+0.0034092045644 0.0686648845004 0.13 20 -65.9006442595
+0.0034092045644 0.0772244994584 0.13 20 -68.1593320138
+0.0034092045644 0.0868511373751 0.13 20 -70.8523432726
+0.0034092045644 0.0976778110089 0.13 20 -74.0809716134
+0.0034092045644 0.109854114199 0.13 20 -77.9746070942
+0.0034092045644 0.123548288826 0.13 20 -82.6997008261
+0.0034092045644 0.138949549437 0.13 20 -88.4719474266
+0.0034092045644 0.156270697655 0.13 20 -95.5729794996
+0.0034092045644 0.175751062485 0.13 20 -104.37345997
+0.0034092045644 0.19765980717 0.13 20 -115.36536717
+0.0034092045644 0.222299648253 0.13 20 -129.207700954
+0.0034092045644 0.250011038262 0.13 20 -146.792169292
+0.0034092045644 0.281176869797 0.13 20 -169.339347264
+0.0034092045644 0.316227766017 0.13 20 -198.542723941
+0.00390693993705 0.001 0.13 20 -52.1009614596
+0.00390693993705 0.00112465782212 0.13 20 -52.1204466447
+0.00390693993705 0.00126485521686 0.13 20 -52.1423849517
+0.00390693993705 0.00142252931349 0.13 20 -52.1670885938
+0.00390693993705 0.00159985871961 0.13 20 -52.1949104104
+0.00390693993705 0.00179929362329 0.13 20 -52.2262493862
+0.00390693993705 0.00202358964773 0.13 20 -52.2615569812
+0.00390693993705 0.00227584592607 0.13 20 -52.3013444041
+0.00390693993705 0.0025595479227 0.13 20 -52.346190989
+0.00390693993705 0.00287861559235 0.13 20 -52.3967538665
+0.00390693993705 0.00323745754282 0.13 20 -52.4537791587
+0.00390693993705 0.00364103194931 0.13 20 -52.5181149738
+0.00390693993705 0.00409491506238 0.13 20 -52.5907265361
+0.00390693993705 0.00460537825582 0.13 20 -52.6727138584
+0.00390693993705 0.00517947467923 0.13 20 -52.7653324559
+0.00390693993705 0.00582513671247 0.13 20 -52.8700177106
+0.00390693993705 0.0065512855686 0.13 20 -52.9884136408
+0.00390693993705 0.00736795455966 0.13 20 -53.1224070063
+0.00390693993705 0.00828642772855 0.13 20 -53.2741679074
+0.00390693993705 0.00931939576234 0.13 20 -53.4461983223
+0.00390693993705 0.0104811313415 0.13 20 -53.641390394
+0.00390693993705 0.0117876863479 0.13 20 -53.8630967468
+0.00390693993705 0.0132571136559 0.13 20 -54.1152157145
+0.00390693993705 0.0149097165718 0.13 20 -54.4022951394
+0.00390693993705 0.0167683293681 0.13 20 -54.7296594105
+0.00390693993705 0.0188586327877 0.13 20 -55.1035657186
+0.00390693993705 0.0212095088792 0.13 20 -55.5313972219
+0.00390693993705 0.0238534400643 0.13 20 -56.0219030687
+0.00390693993705 0.0268269579528 0.13 20 -56.5854981912
+0.00390693993705 0.0301711481053 0.13 20 -57.2346397296
+0.00390693993705 0.033932217719 0.13 20 -57.9843021904
+0.00390693993705 0.0381621340795 0.13 20 -58.8525804752
+0.00390693993705 0.0429193426013 0.13 20 -59.8614593811
+0.00390693993705 0.0482695743768 0.13 20 -61.0378009859
+0.00390693993705 0.0542867543932 0.13 20 -62.4146187736
+0.00390693993705 0.0610540229659 0.13 20 -64.0327312463
+0.00390693993705 0.0686648845004 0.13 20 -65.9429206853
+0.00390693993705 0.0772244994584 0.13 20 -68.2087684061
+0.00390693993705 0.0868511373751 0.13 20 -70.9104016897
+0.00390693993705 0.0976778110089 0.13 20 -74.1494775354
+0.00390693993705 0.109854114199 0.13 20 -78.0558563105
+0.00390693993705 0.123548288826 0.13 20 -82.7966022564
+0.00390693993705 0.138949549437 0.13 20 -88.5882154132
+0.00390693993705 0.156270697655 0.13 20 -95.7133948277
+0.00390693993705 0.175751062485 0.13 20 -104.544227342
+0.00390693993705 0.19765980717 0.13 20 -115.574609658
+0.00390693993705 0.222299648253 0.13 20 -129.466151747
+0.00390693993705 0.250011038262 0.13 20 -147.11415251
+0.00390693993705 0.281176869797 0.13 20 -169.744191332
+0.00390693993705 0.316227766017 0.13 20 -199.056839547
+0.00447734343405 0.001 0.13 20 -52.1013653708
+0.00447734343405 0.00112465782212 0.13 20 -52.120901186
+0.00447734343405 0.00126485521686 0.13 20 -52.1428965087
+0.00447734343405 0.00142252931349 0.13 20 -52.167664368
+0.00447734343405 0.00159985871961 0.13 20 -52.1955585257
+0.00447734343405 0.00179929362329 0.13 20 -52.2269790111
+0.00447734343405 0.00202358964773 0.13 20 -52.2623784672
+0.00447734343405 0.00227584592607 0.13 20 -52.3022694437
+0.00447734343405 0.0025595479227 0.13 20 -52.3472327968
+0.00447734343405 0.00287861559235 0.13 20 -52.3979273862
+0.00447734343405 0.00323745754282 0.13 20 -52.4551013001
+0.00447734343405 0.00364103194931 0.13 20 -52.519604886
+0.00447734343405 0.00409491506238 0.13 20 -52.5924059221
+0.00447734343405 0.00460537825582 0.13 20 -52.6746073381
+0.00447734343405 0.00517947467923 0.13 20 -52.767467987
+0.00447734343405 0.00582513671247 0.13 20 -52.8724270774
+0.00447734343405 0.0065512855686 0.13 20 -52.9911330238
+0.00447734343405 0.00736795455966 0.13 20 -53.1254776486
+0.00447734343405 0.00828642772855 0.13 20 -53.2776368964
+0.00447734343405 0.00931939576234 0.13 20 -53.450119511
+0.00447734343405 0.0104811313415 0.13 20 -53.6458254909
+0.00447734343405 0.0117876863479 0.13 20 -53.868116611
+0.00447734343405 0.0132571136559 0.13 20 -54.1209019009
+0.00447734343405 0.0149097165718 0.13 20 -54.4087417525
+0.00447734343405 0.0167683293681 0.13 20 -54.7369753378
+0.00447734343405 0.0188586327877 0.13 20 -55.1118773366
+0.00447734343405 0.0212095088792 0.13 20 -55.5408516908
+0.00447734343405 0.0238534400643 0.13 20 -56.0326723664
+0.00447734343405 0.0268269579528 0.13 20 -56.59778408
+0.00447734343405 0.0301711481053 0.13 20 -57.2486799067
+0.00447734343405 0.033932217719 0.13 20 -58.0003779482
+0.00447734343405 0.0381621340795 0.13 20 -58.8710262991
+0.00447734343405 0.0429193426013 0.13 20 -59.8826750481
+0.00447734343405 0.0482695743768 0.13 20 -61.0622669091
+0.00447734343405 0.0542867543932 0.13 20 -62.4429155855
+0.00447734343405 0.0610540229659 0.13 20 -64.0655649492
+0.00447734343405 0.0686648845004 0.13 20 -65.9811551607
+0.00447734343405 0.0772244994584 0.13 20 -68.2534677093
+0.00447734343405 0.0868511373751 0.13 20 -70.9628854427
+0.00447734343405 0.0976778110089 0.13 20 -74.2113939667
+0.00447734343405 0.109854114199 0.13 20 -78.1292792404
+0.00447734343405 0.123548288826 0.13 20 -82.8841608108
+0.00447734343405 0.138949549437 0.13 20 -88.6932688391
+0.00447734343405 0.156270697655 0.13 20 -95.8402700097
+0.00447734343405 0.175751062485 0.13 20 -104.698544379
+0.00447734343405 0.19765980717 0.13 20 -115.76373257
+0.00447734343405 0.222299648253 0.13 20 -129.699819506
+0.00447734343405 0.250011038262 0.13 20 -147.405374372
+0.00447734343405 0.281176869797 0.13 20 -170.110537826
+0.00447734343405 0.316227766017 0.13 20 -199.522341473
+0.00513102442049 0.001 0.13 20 -52.1017401911
+0.00513102442049 0.00112465782212 0.13 20 -52.121322983
+0.00513102442049 0.00126485521686 0.13 20 -52.1433712054
+0.00513102442049 0.00142252931349 0.13 20 -52.1681986435
+0.00513102442049 0.00159985871961 0.13 20 -52.1961599145
+0.00513102442049 0.00179929362329 0.13 20 -52.2276560154
+0.00513102442049 0.00202358964773 0.13 20 -52.2631406853
+0.00513102442049 0.00227584592607 0.13 20 -52.3031277164
+0.00513102442049 0.0025595479227 0.13 20 -52.3481993743
+0.00513102442049 0.00287861559235 0.13 20 -52.3990161195
+0.00513102442049 0.00323745754282 0.13 20 -52.4563278608
+0.00513102442049 0.00364103194931 0.13 20 -52.5209870179
+0.00513102442049 0.00409491506238 0.13 20 -52.5939637313
+0.00513102442049 0.00460537825582 0.13 20 -52.6763636288
+0.00513102442049 0.00517947467923 0.13 20 -52.7694486489
+0.00513102442049 0.00582513671247 0.13 20 -52.8746615365
+0.00513102442049 0.0065512855686 0.13 20 -52.9936547671
+0.00513102442049 0.00736795455966 0.13 20 -53.1283248375
+0.00513102442049 0.00828642772855 0.13 20 -53.2808530858
+0.00513102442049 0.00931939576234 0.13 20 -53.4537544964
+0.00513102442049 0.0104811313415 0.13 20 -53.64993631
+0.00513102442049 0.0117876863479 0.13 20 -53.8727687327
+0.00513102442049 0.0132571136559 0.13 20 -54.126170644
+0.00513102442049 0.0149097165718 0.13 20 -54.4147139858
+0.00513102442049 0.0167683293681 0.13 20 -54.7437515284
+0.00513102442049 0.0188586327877 0.13 20 -55.1195740292
+0.00513102442049 0.0212095088792 0.13 20 -55.5496045266
+0.00513102442049 0.0238534400643 0.13 20 -56.0426397773
+0.00513102442049 0.0268269579528 0.13 20 -56.6091518374
+0.00513102442049 0.0301711481053 0.13 20 -57.2616667524
+0.00513102442049 0.033932217719 0.13 20 -58.0152426082
+0.00513102442049 0.0381621340795 0.13 20 -58.8880762726
+0.00513102442049 0.0429193426013 0.13 20 -59.9022776893
+0.00513102442049 0.0482695743768 0.13 20 -61.0848634858
+0.00513102442049 0.0542867543932 0.13 20 -62.4690392302
+0.00513102442049 0.0610540229659 0.13 20 -64.0958637261
+0.00513102442049 0.0686648845004 0.13 20 -66.0164219008
+0.00513102442049 0.0772244994584 0.13 20 -68.2946788552
+0.00513102442049 0.0868511373751 0.13 20 -71.011251964
+0.00513102442049 0.0976778110089 0.13 20 -74.2684285563
+0.00513102442049 0.109854114199 0.13 20 -78.1968856215
+0.00513102442049 0.123548288826 0.13 20 -82.9647532993
+0.00513102442049 0.138949549437 0.13 20 -88.7899336363
+0.00513102442049 0.156270697655 0.13 20 -95.9569845686
+0.00513102442049 0.175751062485 0.13 20 -104.840478406
+0.00513102442049 0.19765980717 0.13 20 -115.937665145
+0.00513102442049 0.222299648253 0.13 20 -129.914723687
+0.00513102442049 0.250011038262 0.13 20 -147.673247563
+0.00513102442049 0.281176869797 0.13 20 -170.447600434
+0.00513102442049 0.316227766017 0.13 20 -199.950802258
+0.00588014120237 0.001 0.13 20 -52.1020901808
+0.00588014120237 0.00112465782212 0.13 20 -52.1217168295
+0.00588014120237 0.00126485521686 0.13 20 -52.1438144363
+0.00588014120237 0.00142252931349 0.13 20 -52.1686974916
+0.00588014120237 0.00159985871961 0.13 20 -52.1967214098
+0.00588014120237 0.00179929362329 0.13 20 -52.2282880902
+0.00588014120237 0.00202358964773 0.13 20 -52.2638522934
+0.00588014120237 0.00227584592607 0.13 20 -52.3039289693
+0.00588014120237 0.0025595479227 0.13 20 -52.3491016964
+0.00588014120237 0.00287861559235 0.13 20 -52.4000324263
+0.00588014120237 0.00323745754282 0.13 20 -52.457472762
+0.00588014120237 0.00364103194931 0.13 20 -52.5222770518
+0.00588014120237 0.00409491506238 0.13 20 -52.5954176342
+0.00588014120237 0.00460537825582 0.13 20 -52.6780026454
+0.00588014120237 0.00517947467923 0.13 20 -52.771296892
+0.00588014120237 0.00582513671247 0.13 20 -52.8767464041
+0.00588014120237 0.0065512855686 0.13 20 -52.9960074278
+0.00588014120237 0.00736795455966 0.13 20 -53.1309807973
+0.00588014120237 0.00828642772855 0.13 20 -53.283852853
+0.00588014120237 0.00931939576234 0.13 20 -53.4571443632
+0.00588014120237 0.0104811313415 0.13 20 -53.653769276
+0.00588014120237 0.0117876863479 0.13 20 -53.877105601
+0.00588014120237 0.0132571136559 0.13 20 -54.1310813272
+0.00588014120237 0.0149097165718 0.13 20 -54.420279071
+0.00588014120237 0.0167683293681 0.13 20 -54.7500641597
+0.00588014120237 0.0188586327877 0.13 20 -55.1267421867
+0.00588014120237 0.0212095088792 0.13 20 -55.5577537988
+0.00588014120237 0.0238534400643 0.13 20 -56.0519167524
+0.00588014120237 0.0268269579528 0.13 20 -56.6197282765
+0.00588014120237 0.0301711481053 0.13 20 -57.2737447556
+0.00588014120237 0.033932217719 0.13 20 -58.0290610473
+0.00588014120237 0.0381621340795 0.13 20 -58.9039188519
+0.00588014120237 0.0429193426013 0.13 20 -59.9204831091
+0.00588014120237 0.0482695743768 0.13 20 -61.1058383406
+0.00588014120237 0.0542867543932 0.13 20 -62.4932744815
+0.00588014120237 0.0610540229659 0.13 20 -64.12395588
+0.00588014120237 0.0686648845004 0.13 20 -66.0491004147
+0.00588014120237 0.0772244994584 0.13 20 -68.3328418439
+0.00588014120237 0.0868511373751 0.13 20 -71.0560130371
+0.00588014120237 0.0976778110089 0.13 20 -74.3211786813
+0.00588014120237 0.109854114199 0.13 20 -78.2593754179
+0.00588014120237 0.123548288826 0.13 20 -83.0392033142
+0.00588014120237 0.138949549437 0.13 20 -88.8791832536
+0.00588014120237 0.156270697655 0.13 20 -96.0646947365
+0.00588014120237 0.175751062485 0.13 20 -104.971410093
+0.00588014120237 0.19765980717 0.13 20 -116.098065621
+0.00588014120237 0.222299648253 0.13 20 -130.112868502
+0.00588014120237 0.250011038262 0.13 20 -147.920211241
+0.00588014120237 0.281176869797 0.13 20 -170.758370371
+0.00588014120237 0.316227766017 0.13 20 -200.345921519
+0.00673862716803 0.001 0.13 20 -52.1024166719
+0.00673862716803 0.00112465782212 0.13 20 -52.1220842244
+0.00673862716803 0.00126485521686 0.13 20 -52.1442278882
+0.00673862716803 0.00142252931349 0.13 20 -52.1691628105
+0.00673862716803 0.00159985871961 0.13 20 -52.1972451483
+0.00673862716803 0.00179929362329 0.13 20 -52.2288776408
+0.00673862716803 0.00202358964773 0.13 20 -52.2645159995
+0.00673862716803 0.00227584592607 0.13 20 -52.3046762515
+0.00673862716803 0.0025595479227 0.13 20 -52.3499431969
+0.00673862716803 0.00287861559235 0.13 20 -52.4009801735
+0.00673862716803 0.00323745754282 0.13 20 -52.4585403598
+0.00673862716803 0.00364103194931 0.13 20 -52.5234798961
+0.00673862716803 0.00409491506238 0.13 20 -52.5967731621
+0.00673862716803 0.00460537825582 0.13 20 -52.6795306231
+0.00673862716803 0.00517947467923 0.13 20 -52.7730197468
+0.00673862716803 0.00582513671247 0.13 20 -52.8786896097
+0.00673862716803 0.0065512855686 0.13 20 -52.9981999524
+0.00673862716803 0.00736795455966 0.13 20 -53.1334556262
+0.00673862716803 0.00828642772855 0.13 20 -53.2866476009
+0.00673862716803 0.00931939576234 0.13 20 -53.4603019934
+0.00673862716803 0.0104811313415 0.13 20 -53.6573389498
+0.00673862716803 0.0117876863479 0.13 20 -53.8811436838
+0.00673862716803 0.0132571136559 0.13 20 -54.1356525876
+0.00673862716803 0.0149097165718 0.13 20 -54.4254581144
+0.00673862716803 0.0167683293681 0.13 20 -54.7559371537
+0.00673862716803 0.0188586327877 0.13 20 -55.1334089459
+0.00673862716803 0.0212095088792 0.13 20 -55.5653303197
+0.00673862716803 0.0238534400643 0.13 20 -56.0605383129
+0.00673862716803 0.0268269579528 0.13 20 -56.6295532476
+0.00673862716803 0.0301711481053 0.13 20 -57.2849593162
+0.00673862716803 0.033932217719 0.13 20 -58.0418850554
+0.00673862716803 0.0381621340795 0.13 20 -58.918613199
+0.00673862716803 0.0429193426013 0.13 20 -59.9373589926
+0.00673862716803 0.0482695743768 0.13 20 -61.1252690321
+0.00673862716803 0.0542867543932 0.13 20 -62.5157103597
+0.00673862716803 0.0610540229659 0.13 20 -64.1499437643
+0.00673862716803 0.0686648845004 0.13 20 -66.0793085968
+0.00673862716803 0.0772244994584 0.13 20 -68.3680927189
+0.00673862716803 0.0868511373751 0.13 20 -71.0973259352
+0.00673862716803 0.0976778110089 0.13 20 -74.3698264859
+0.00673862716803 0.109854114199 0.13 20 -78.3169599425
+0.00673862716803 0.123548288826 0.13 20 -83.1077563998
+0.00673862716803 0.138949549437 0.13 20 -88.9613034102
+0.00673862716803 0.156270697655 0.13 20 -96.1637333458
+0.00673862716803 0.175751062485 0.13 20 -105.091727418
+0.00673862716803 0.19765980717 0.13 20 -116.245386298
+0.00673862716803 0.222299648253 0.13 20 -130.294780839
+0.00673862716803 0.250011038262 0.13 20 -148.146877978
+0.00673862716803 0.281176869797 0.13 20 -171.043557151
+0.00673862716803 0.316227766017 0.13 20 -200.708515643
+0.00772244994584 0.001 0.13 20 -52.1027204848
+0.00772244994584 0.00112465782212 0.13 20 -52.1224260912
+0.00772244994584 0.00126485521686 0.13 20 -52.1446126008
+0.00772244994584 0.00142252931349 0.13 20 -52.169595771
+0.00772244994584 0.00159985871961 0.13 20 -52.1977324482
+0.00772244994584 0.00179929362329 0.13 20 -52.2294261518
+0.00772244994584 0.00202358964773 0.13 20 -52.2651334758
+0.00772244994584 0.00227584592607 0.13 20 -52.305371447
+0.00772244994584 0.0025595479227 0.13 20 -52.3507259986
+0.00772244994584 0.00287861559235 0.13 20 -52.4018617541
+0.00772244994584 0.00323745754282 0.13 20 -52.4595333521
+0.00772244994584 0.00364103194931 0.13 20 -52.5245985933
+0.00772244994584 0.00409491506238 0.13 20 -52.5980337477
+0.00772244994584 0.00460537825582 0.13 20 -52.6809514359
+0.00772244994584 0.00517947467923 0.13 20 -52.7746215871
+0.00772244994584 0.00582513671247 0.13 20 -52.8804960938
+0.00772244994584 0.0065512855686 0.13 20 -53.0002379244
+0.00772244994584 0.00736795455966 0.13 20 -53.135755638
+0.00772244994584 0.00828642772855 0.13 20 -53.2892444734
+0.00772244994584 0.00931939576234 0.13 20 -53.4632354758
+0.00772244994584 0.0104811313415 0.13 20 -53.6606544968
+0.00772244994584 0.0117876863479 0.13 20 -53.8848933755
+0.00772244994584 0.0132571136559 0.13 20 -54.1398962239
+0.00772244994584 0.0149097165718 0.13 20 -54.4302645226
+0.00772244994584 0.0167683293681 0.13 20 -54.7613857601
+0.00772244994584 0.0188586327877 0.13 20 -55.1395916734
+0.00772244994584 0.0212095088792 0.13 20 -55.5723538923
+0.00772244994584 0.0238534400643 0.13 20 -56.0685270711
+0.00772244994584 0.0268269579528 0.13 20 -56.6386526078
+0.00772244994584 0.0301711481053 0.13 20 -57.2953400484
+0.00772244994584 0.033932217719 0.13 20 -58.0537486053
+0.00772244994584 0.0381621340795 0.13 20 -58.9321983532
+0.00772244994584 0.0429193426013 0.13 20 -59.9529502809
+0.00772244994584 0.0482695743768 0.13 20 -61.1432073888
+0.00772244994584 0.0542867543932 0.13 20 -62.5364067458
+0.00772244994584 0.0610540229659 0.13 20 -64.1738966892
+0.00772244994584 0.0686648845004 0.13 20 -66.1071268124
+0.00772244994584 0.0772244994584 0.13 20 -68.4005248181
+0.00772244994584 0.0868511373751 0.13 20 -71.1352992262
+0.00772244994584 0.0976778110089 0.13 20 -74.4144984126
+0.00772244994584 0.109854114199 0.13 20 -78.3697865954
+0.00772244994584 0.123548288826 0.13 20 -83.1705844763
+0.00772244994584 0.138949549437 0.13 20 -89.0364946139
+0.00772244994584 0.156270697655 0.13 20 -96.2543340533
+0.00772244994584 0.175751062485 0.13 20 -105.20170216
+0.00772244994584 0.19765980717 0.13 20 -116.379942268
+0.00772244994584 0.222299648253 0.13 20 -130.460824081
+0.00772244994584 0.250011038262 0.13 20 -148.353663417
+0.00772244994584 0.281176869797 0.13 20 -171.303630136
+0.00772244994584 0.316227766017 0.13 20 -201.039103912
+0.00884990839809 0.001 0.13 20 -52.1030027987
+0.00884990839809 0.00112465782212 0.13 20 -52.1227437574
+0.00884990839809 0.00126485521686 0.13 20 -52.1449700687
+0.00884990839809 0.00142252931349 0.13 20 -52.1699980558
+0.00884990839809 0.00159985871961 0.13 20 -52.1981852049
+0.00884990839809 0.00179929362329 0.13 20 -52.229935758
+0.00884990839809 0.00202358964773 0.13 20 -52.2657071275
+0.00884990839809 0.00227584592607 0.13 20 -52.3060172661
+0.00884990839809 0.0025595479227 0.13 20 -52.3514531566
+0.00884990839809 0.00287861559235 0.13 20 -52.4026806124
+0.00884990839809 0.00323745754282 0.13 20 -52.4604556233
+0.00884990839809 0.00364103194931 0.13 20 -52.5256375254
+0.00884990839809 0.00409491506238 0.13 20 -52.5992043362
+0.00884990839809 0.00460537825582 0.13 20 -52.6822706672
+0.00884990839809 0.00517947467923 0.13 20 -52.7761087198
+0.00884990839809 0.00582513671247 0.13 20 -52.8821729842
+0.00884990839809 0.0065512855686 0.13 20 -53.0021294037
+0.00884990839809 0.00736795455966 0.13 20 -53.1378899523
+0.00884990839809 0.00828642772855 0.13 20 -53.2916537966
+0.00884990839809 0.00931939576234 0.13 20 -53.4659565121
+0.00884990839809 0.0104811313415 0.13 20 -53.6637291889
+0.00884990839809 0.0117876863479 0.13 20 -53.888369743
+0.00884990839809 0.0132571136559 0.13 20 -54.1438293585
+0.00884990839809 0.0149097165718 0.13 20 -54.4347177766
+0.00884990839809 0.0167683293681 0.13 20 -54.7664321714
+0.00884990839809 0.0188586327877 0.13 20 -55.1453156851
+0.00884990839809 0.0212095088792 0.13 20 -55.5788534387
+0.00884990839809 0.0238534400643 0.13 20 -56.0759161225
+0.00884990839809 0.0268269579528 0.13 20 -56.6470642946
+0.00884990839809 0.0301711481053 0.13 20 -57.3049305212
+0.00884990839809 0.033932217719 0.13 20 -58.0647018338
+0.00884990839809 0.0381621340795 0.13 20 -58.9447321325
+0.00884990839809 0.0429193426013 0.13 20 -59.9673237996
+0.00884990839809 0.0482695743768 0.13 20 -61.1597308306
+0.00884990839809 0.0542867543932 0.13 20 -62.5554535552
+0.00884990839809 0.0610540229659 0.13 20 -64.1959193493
+0.00884990839809 0.0686648845004 0.13 20 -66.1326772853
+0.00884990839809 0.0772244994584 0.13 20 -68.4302812119
+0.00884990839809 0.0868511373751 0.13 20 -71.1701008353
+0.00884990839809 0.0976778110089 0.13 20 -74.455392092
+0.00884990839809 0.109854114199 0.13 20 -78.4180885864
+0.00884990839809 0.123548288826 0.13 20 -83.2279634511
+0.00884990839809 0.138949549437 0.13 20 -89.1050840948
+0.00884990839809 0.156270697655 0.13 20 -96.3368858565
+0.00884990839809 0.175751062485 0.13 20 -105.301797714
+0.00884990839809 0.19765980717 0.13 20 -116.502286542
+0.00884990839809 0.222299648253 0.13 20 -130.611659122
+0.00884990839809 0.250011038262 0.13 20 -148.541358069
+0.00884990839809 0.281176869797 0.13 20 -171.539534974
+0.00884990839809 0.316227766017 0.13 20 -201.338816362
+0.0101419729754 0.001 0.13 20 -52.1032652568
+0.0101419729754 0.00112465782212 0.13 20 -52.1230390728
+0.0101419729754 0.00126485521686 0.13 20 -52.1453023745
+0.0101419729754 0.00142252931349 0.13 20 -52.1703720102
+0.0101419729754 0.00159985871961 0.13 20 -52.1986060592
+0.0101419729754 0.00179929362329 0.13 20 -52.2304094343
+0.0101419729754 0.00202358964773 0.13 20 -52.266240306
+0.0101419729754 0.00227584592607 0.13 20 -52.3066174853
+0.0101419729754 0.0025595479227 0.13 20 -52.3521289271
+0.0101419729754 0.00287861559235 0.13 20 -52.4034415469
+0.0101419729754 0.00323745754282 0.13 20 -52.4613125847
+0.0101419729754 0.00364103194931 0.13 20 -52.5266027971
+0.0101419729754 0.00409491506238 0.13 20 -52.6002918168
+0.0101419729754 0.00460537825582 0.13 20 -52.6834960945
+0.0101419729754 0.00517947467923 0.13 20 -52.7774899295
+0.0101419729754 0.00582513671247 0.13 20 -52.8837302078
+0.0101419729754 0.0065512855686 0.13 20 -53.0038856151
+0.0101419729754 0.00736795455966 0.13 20 -53.1398712691
+0.0101419729754 0.00828642772855 0.13 20 -53.29388995
+0.0101419729754 0.00931939576234 0.13 20 -53.4684813955
+0.0101419729754 0.0104811313415 0.13 20 -53.6665815041
+0.0101419729754 0.0117876863479 0.13 20 -53.8915937621
+0.0101419729754 0.0132571136559 0.13 20 -54.1474758282
+0.0101419729754 0.0149097165718 0.13 20 -54.4388449955
+0.0101419729754 0.0167683293681 0.13 20 -54.7711072805
+0.0101419729754 0.0188586327877 0.13 20 -55.1506162226
+0.0101419729754 0.0212095088792 0.13 20 -55.5848692225
+0.0101419729754 0.0238534400643 0.13 20 -56.0827515451
+0.0101419729754 0.0268269579528 0.13 20 -56.654841136
+0.0101419729754 0.0301711481053 0.13 20 -57.3137914205
+0.0101419729754 0.033932217719 0.13 20 -58.0748146008
+0.0101419729754 0.0381621340795 0.13 20 -58.9562951402
+0.0101419729754 0.0429193426013 0.13 20 -59.9805727737
+0.0101419729754 0.0482695743768 0.13 20 -61.1749474594
+0.0101419729754 0.0542867543932 0.13 20 -62.5729764833
+0.0101419729754 0.0610540229659 0.13 20 -64.2161583186
+0.0101419729754 0.0686648845004 0.13 20 -66.1561314529
+0.0101419729754 0.0772244994584 0.13 20 -68.4575630512
+0.0101419729754 0.0868511373751 0.13 20 -71.2019675492
+0.0101419729754 0.0976778110089 0.13 20 -74.4927872019
+0.0101419729754 0.109854114199 0.13 20 -78.4621974009
+0.0101419729754 0.123548288826 0.13 20 -83.2802876107
+0.0101419729754 0.138949549437 0.13 20 -89.1675425387
+0.0101419729754 0.156270697655 0.13 20 -96.4119527149
+0.0101419729754 0.175751062485 0.13 20 -105.392692321
+0.0101419729754 0.19765980717 0.13 20 -116.613237895
+0.0101419729754 0.222299648253 0.13 20 -130.748278173
+0.0101419729754 0.250011038262 0.13 20 -148.711168978
+0.0101419729754 0.281176869797 0.13 20 -171.752745783
+0.0101419729754 0.316227766017 0.13 20 -201.609460289
+0.0116226757619 0.001 0.13 20 -52.1035098349
+0.0116226757619 0.00112465782212 0.13 20 -52.1233142617
+0.0116226757619 0.00126485521686 0.13 20 -52.1456120223
+0.0116226757619 0.00142252931349 0.13 20 -52.1707204537
+0.0116226757619 0.00159985871961 0.13 20 -52.1989981866
+0.0116226757619 0.00179929362329 0.13 20 -52.230850757
+0.0116226757619 0.00202358964773 0.13 20 -52.2667370401
+0.0116226757619 0.00227584592607 0.13 20 -52.307176644
+0.0116226757619 0.0025595479227 0.13 20 -52.3527584263
+0.0116226757619 0.00287861559235 0.13 20 -52.4041503249
+0.0116226757619 0.00323745754282 0.13 20 -52.4621107399
+0.0116226757619 0.00364103194931 0.13 20 -52.5275017442
+0.0116226757619 0.00409491506238 0.13 20 -52.601304467
+0.0116226757619 0.00460537825582 0.13 20 -52.6846370621
+0.0116226757619 0.00517947467923 0.13 20 -52.7787757691
+0.0116226757619 0.00582513671247 0.13 20 -52.8851796888
+0.0116226757619 0.0065512855686 0.13 20 -53.0055200391
+0.0116226757619 0.00736795455966 0.13 20 -53.1417148385
+0.0116226757619 0.00828642772855 0.13 20 -53.2959701969
+0.0116226757619 0.00931939576234 0.13 20 -53.4708296838
+0.0116226757619 0.0104811313415 0.13 20 -53.6692336182
+0.0116226757619 0.0117876863479 0.13 20 -53.894590601
+0.0116226757619 0.0132571136559 0.13 20 -54.1508642269
+0.0116226757619 0.0149097165718 0.13 20 -54.4426787027
+0.0116226757619 0.0167683293681 0.13 20 -54.7754481275
+0.0116226757619 0.0188586327877 0.13 20 -55.1555355284
+0.0116226757619 0.0212095088792 0.13 20 -55.5904494934
+0.0116226757619 0.0238534400643 0.13 20 -56.0890885421
+0.0116226757619 0.0268269579528 0.13 20 -56.6620464058
+0.0116226757619 0.0301711481053 0.13 20 -57.321995414
+0.0116226757619 0.033932217719 0.13 20 -58.084170542
+0.0116226757619 0.0381621340795 0.13 20 -58.9669838584
+0.0116226757619 0.0429193426013 0.13 20 -59.9928087824
+0.0116226757619 0.0482695743768 0.13 20 -61.1889866576
+0.0116226757619 0.0542867543932 0.13 20 -62.589125984
+0.0116226757619 0.0610540229659 0.13 20 -64.2347890836
+0.0116226757619 0.0686648845004 0.13 20 -66.1776946543
+0.0116226757619 0.0772244994584 0.13 20 -68.4826114166
+0.0116226757619 0.0868511373751 0.13 20 -71.2311834138
+0.0116226757619 0.0976778110089 0.13 20 -74.5270196499
+0.0116226757619 0.109854114199 0.13 20 -78.5025118122
+0.0116226757619 0.123548288826 0.13 20 -83.3280322611
+0.0116226757619 0.138949549437 0.13 20 -89.2244388352
+0.0116226757619 0.156270697655 0.13 20 -96.4802184726
+0.0116226757619 0.175751062485 0.13 20 -105.4752117
+0.0116226757619 0.19765980717 0.13 20 -116.713798004
+0.0116226757619 0.222299648253 0.13 20 -130.871902281
+0.0116226757619 0.250011038262 0.13 20 -148.864592184
+0.0116226757619 0.281176869797 0.13 20 -171.945105362
+0.0116226757619 0.316227766017 0.13 20 -201.853318516
+0.0133195574662 0.001 0.13 20 -52.1037387144
+0.0133195574662 0.00112465782212 0.13 20 -52.1235717792
+0.0133195574662 0.00126485521686 0.13 20 -52.1459017763
+0.0133195574662 0.00142252931349 0.13 20 -52.1710464985
+0.0133195574662 0.00159985871961 0.13 20 -52.1993650916
+0.0133195574662 0.00179929362329 0.13 20 -52.2312636731
+0.0133195574662 0.00202358964773 0.13 20 -52.2672017758
+0.0133195574662 0.00227584592607 0.13 20 -52.3076997515
+0.0133195574662 0.0025595479227 0.13 20 -52.353347299
+0.0133195574662 0.00287861559235 0.13 20 -52.4048133094
+0.0133195574662 0.00323745754282 0.13 20 -52.4628572627
+0.0133195574662 0.00364103194931 0.13 20 -52.5283424577
+0.0133195574662 0.00409491506238 0.13 20 -52.6022514156
+0.0133195574662 0.00460537825582 0.13 20 -52.6857038731
+0.0133195574662 0.00517947467923 0.13 20 -52.7799778722
+0.0133195574662 0.00582513671247 0.13 20 -52.8865345694
+0.0133195574662 0.0065512855686 0.13 20 -53.0070475304
+0.0133195574662 0.00736795455966 0.13 20 -53.1434374604
+0.0133195574662 0.00828642772855 0.13 20 -53.2979135503
+0.0133195574662 0.00931939576234 0.13 20 -53.4730229103
+0.0133195574662 0.0104811313415 0.13 20 -53.671709939
+0.0133195574662 0.0117876863479 0.13 20 -53.8973879507
+0.0133195574662 0.0132571136559 0.13 20 -54.1540260026
+0.0133195574662 0.0149097165718 0.13 20 -54.4462546529
+0.0133195574662 0.0167683293681 0.13 20 -54.7794954134
+0.0133195574662 0.0188586327877 0.13 20 -55.1601199974
+0.0133195574662 0.0212095088792 0.13 20 -55.5956472158
+0.0133195574662 0.0238534400643 0.13 20 -56.094987677
+0.0133195574662 0.0268269579528 0.13 20 -56.6687494811
+0.0133195574662 0.0301711481053 0.13 20 -57.3296221311
+0.0133195574662 0.033932217719 0.13 20 -58.0928612487
+0.0133195574662 0.0381621340795 0.13 20 -58.9769038809
+0.0133195574662 0.0429193426013 0.13 20 -60.0041538667
+0.0133195574662 0.0482695743768 0.13 20 -61.2019898553
+0.0133195574662 0.0542867543932 0.13 20 -62.6040664305
+0.0133195574662 0.0610540229659 0.13 20 -64.2520032727
+0.0133195574662 0.0686648845004 0.13 20 -66.1975910285
+0.0133195574662 0.0772244994584 0.13 20 -68.5056893906
+0.0133195574662 0.0868511373751 0.13 20 -71.2580583649
+0.0133195574662 0.0976778110089 0.13 20 -74.5584559972
+0.0133195574662 0.109854114199 0.13 20 -78.5394671354
+0.0133195574662 0.123548288826 0.13 20 -83.3717166016
+0.0133195574662 0.138949549437 0.13 20 -89.2763950398
+0.0133195574662 0.156270697655 0.13 20 -96.5424319626
+0.0133195574662 0.175751062485 0.13 20 -105.550261799
+0.0133195574662 0.19765980717 0.13 20 -116.805068652
+0.0133195574662 0.222299648253 0.13 20 -130.983878823
+0.0133195574662 0.250011038262 0.13 20 -149.003285093
+0.0133195574662 0.281176869797 0.13 20 -172.118665285
+0.0133195574662 0.316227766017 0.13 20 -202.072947701
+0.0152641796718 0.001 0.13 20 -52.103954206
+0.0152641796718 0.00112465782212 0.13 20 -52.1238142267
+0.0152641796718 0.00126485521686 0.13 20 -52.1461745646
+0.0152641796718 0.00142252931349 0.13 20 -52.1713534411
+0.0152641796718 0.00159985871961 0.13 20 -52.1997104858
+0.0152641796718 0.00179929362329 0.13 20 -52.2316523626
+0.0152641796718 0.00202358964773 0.13 20 -52.2676392213
+0.0152641796718 0.00227584592607 0.13 20 -52.3081921114
+0.0152641796718 0.0025595479227 0.13 20 -52.3539015212
+0.0152641796718 0.00287861559235 0.13 20 -52.4054372351
+0.0152641796718 0.00323745754282 0.13 20 -52.4635597455
+0.0152641796718 0.00364103194931 0.13 20 -52.529133499
+0.0152641796718 0.00409491506238 0.13 20 -52.6031423195
+0.0152641796718 0.00460537825582 0.13 20 -52.6867074243
+0.0152641796718 0.00517947467923 0.13 20 -52.7811085399
+0.0152641796718 0.00582513671247 0.13 20 -52.887808742
+0.0152641796718 0.0065512855686 0.13 20 -53.0084837863
+0.0152641796718 0.00736795455966 0.13 20 -53.1450568817
+0.0152641796718 0.00828642772855 0.13 20 -53.2997400867
+0.0152641796718 0.00931939576234 0.13 20 -53.4750838029
+0.0152641796718 0.0104811313415 0.13 20 -53.674036216
+0.0152641796718 0.0117876863479 0.13 20 -53.9000150094
+0.0152641796718 0.0132571136559 0.13 20 -54.1569942955
+0.0152641796718 0.0149097165718 0.13 20 -54.4496105007
+0.0152641796718 0.0167683293681 0.13 20 -54.7832919729
+0.0152641796718 0.0188586327877 0.13 20 -55.1644184204
+0.0152641796718 0.0212095088792 0.13 20 -55.6005180447
+0.0152641796718 0.0238534400643 0.13 20 -56.1005125351
+0.0152641796718 0.0268269579528 0.13 20 -56.6750231341
+0.0152641796718 0.0301711481053 0.13 20 -57.3367550166
+0.0152641796718 0.033932217719 0.13 20 -58.1009826031
+0.0152641796718 0.0381621340795 0.13 20 -58.9861656313
+0.0152641796718 0.0429193426013 0.13 20 -60.0147355109
+0.0152641796718 0.0482695743768 0.13 20 -61.214104627
+0.0152641796718 0.0542867543932 0.13 20 -62.6179691475
+0.0152641796718 0.0610540229659 0.13 20 -64.2680004028
+0.0152641796718 0.0686648845004 0.13 20 -66.2160537009
+0.0152641796718 0.0772244994584 0.13 20 -68.5270703435
+0.0152641796718 0.0868511373751 0.13 20 -71.2829141909
+0.0152641796718 0.0976778110089 0.13 20 -74.587476567
+0.0152641796718 0.109854114199 0.13 20 -78.5735148201
+0.0152641796718 0.123548288826 0.13 20 -83.4118789662
+0.0152641796718 0.138949549437 0.13 20 -89.3240562095
+0.0152641796718 0.156270697655 0.13 20 -96.5993700958
+0.0152641796718 0.175751062485 0.13 20 -105.618783431
+0.0152641796718 0.19765980717 0.13 20 -116.888195719
+0.0152641796718 0.222299648253 0.13 20 -131.085612038
+0.0152641796718 0.250011038262 0.13 20 -149.128979899
+0.0152641796718 0.281176869797 0.13 20 -172.275577473
+0.0152641796718 0.316227766017 0.13 20 -202.271041846
+0.0174927118744 0.001 0.13 20 -52.1041586826
+0.0174927118744 0.00112465782212 0.13 20 -52.1240442746
+0.0174927118744 0.00126485521686 0.13 20 -52.1464333932
+0.0174927118744 0.00142252931349 0.13 20 -52.1716446656
+0.0174927118744 0.00159985871961 0.13 20 -52.2000381794
+0.0174927118744 0.00179929362329 0.13 20 -52.2320211156
+0.0174927118744 0.00202358964773 0.13 20 -52.2680542079
+0.0174927118744 0.00227584592607 0.13 20 -52.3086591659
+0.0174927118744 0.0025595479227 0.13 20 -52.3544272239
+0.0174927118744 0.00287861559235 0.13 20 -52.4060290109
+0.0174927118744 0.00323745754282 0.13 20 -52.4642259751
+0.0174927118744 0.00364103194931 0.13 20 -52.5298836467
+0.0174927118744 0.00409491506238 0.13 20 -52.6039870787
+0.0174927118744 0.00460537825582 0.13 20 -52.6876588841
+0.0174927118744 0.00517947467923 0.13 20 -52.7821803759
+0.0174927118744 0.00582513671247 0.13 20 -52.889016436
+0.0174927118744 0.0065512855686 0.13 20 -53.0098448795
+0.0174927118744 0.00736795455966 0.13 20 -53.1465912664
+0.0174927118744 0.00828642772855 0.13 20 -53.3014703455
+0.0174927118744 0.00931939576234 0.13 20 -53.4770356022
+0.0174927118744 0.0104811313415 0.13 20 -53.6762387654
+0.0174927118744 0.0117876863479 0.13 20 -53.9025016001
+0.0174927118744 0.0132571136559 0.13 20 -54.1598029334
+0.0174927118744 0.0149097165718 0.13 20 -54.4527846547
+0.0174927118744 0.0167683293681 0.13 20 -54.7868814644
+0.0174927118744 0.0188586327877 0.13 20 -55.1684804846
+0.0174927118744 0.0212095088792 0.13 20 -55.6051186058
+0.0174927118744 0.0238534400643 0.13 20 -56.1057277473
+0.0174927118744 0.0268269579528 0.13 20 -56.6809412555
+0.0174927118744 0.0301711481053 0.13 20 -57.343478703
+0.0174927118744 0.033932217719 0.13 20 -58.1086317368
+0.0174927118744 0.0381621340795 0.13 20 -58.9948808327
+0.0174927118744 0.0429193426013 0.13 20 -60.0246825327
+0.0174927118744 0.0482695743768 0.13 20 -61.2254798933
+0.0174927118744 0.0542867543932 0.13 20 -62.6310067902
+0.0174927118744 0.0610540229659 0.13 20 -64.2829812708
+0.0174927118744 0.0686648845004 0.13 20 -66.2333169856
+0.0174927118744 0.0772244994584 0.13 20 -68.5470286986
+0.0174927118744 0.0868511373751 0.13 20 -71.3060735516
+0.0174927118744 0.0976778110089 0.13 20 -74.614462335
+0.0174927118744 0.109854114199 0.13 20 -78.6051067311
+0.0174927118744 0.123548288826 0.13 20 -83.4490578929
+0.0174927118744 0.138949549437 0.13 20 -89.3680674992
+0.0174927118744 0.156270697655 0.13 20 -96.6518100205
+0.0174927118744 0.175751062485 0.13 20 -105.681718266
+0.0174927118744 0.19765980717 0.13 20 -116.964327432
+0.0174927118744 0.222299648253 0.13 20 -131.178511498
+0.0174927118744 0.250011038262 0.13 20 -149.243419627
+0.0174927118744 0.281176869797 0.13 20 -172.418014353
+0.0174927118744 0.316227766017 0.13 20 -202.450332039
+0.0200466042264 0.001 0.13 20 -52.104354468
+0.0200466042264 0.00112465782212 0.13 20 -52.1242645383
+0.0200466042264 0.00126485521686 0.13 20 -52.1466812057
+0.0200466042264 0.00142252931349 0.13 20 -52.1719234854
+0.0200466042264 0.00159985871961 0.13 20 -52.2003519026
+0.0200466042264 0.00179929362329 0.13 20 -52.232374132
+0.0200466042264 0.00202358964773 0.13 20 -52.2684514651
+0.0200466042264 0.00227584592607 0.13 20 -52.3091062414
+0.0200466042264 0.0025595479227 0.13 20 -52.3549304071
+0.0200466042264 0.00287861559235 0.13 20 -52.4065953964
+0.0200466042264 0.00323745754282 0.13 20 -52.4648635691
+0.0200466042264 0.00364103194931 0.13 20 -52.5306014875
+0.0200466042264 0.00409491506238 0.13 20 -52.6047953748
+0.0200466042264 0.00460537825582 0.13 20 -52.6885691717
+0.0200466042264 0.00517947467923 0.13 20 -52.7832056998
+0.0200466042264 0.00582513671247 0.13 20 -52.8901715566
+0.0200466042264 0.0065512855686 0.13 20 -53.0111465112
+0.0200466042264 0.00736795455966 0.13 20 -53.1480583529
+0.0200466042264 0.00828642772855 0.13 20 -53.3031243774
+0.0200466042264 0.00931939576234 0.13 20 -53.4789009865
+0.0200466042264 0.0104811313415 0.13 20 -53.6783432551
+0.0200466042264 0.0117876863479 0.13 20 -53.9048767965
+0.0200466042264 0.0132571136559 0.13 20 -54.1624848757
+0.0200466042264 0.0149097165718 0.13 20 -54.4558145154
+0.0200466042264 0.0167683293681 0.13 20 -54.7903063724
+0.0200466042264 0.0188586327877 0.13 20 -55.1723545064
+0.0200466042264 0.0212095088792 0.13 20 -55.6095039201
+0.0200466042264 0.0238534400643 0.13 20 -56.1106960606
+0.0200466042264 0.0268269579528 0.13 20 -56.6865755181
+0.0200466042264 0.0301711481053 0.13 20 -57.3498752049
+0.0200466042264 0.033932217719 0.13 20 -58.1159026824
+0.0200466042264 0.0381621340795 0.13 20 -59.0031575309
+0.0200466042264 0.0429193426013 0.13 20 -60.0341193758
+0.0200466042264 0.0482695743768 0.13 20 -61.2362593595
+0.0200466042264 0.0542867543932 0.13 20 -62.6433457834
+0.0200466042264 0.0610540229659 0.13 20 -64.2971392178
+0.0200466042264 0.0686648845004 0.13 20 -66.2496062619
+0.0200466042264 0.0772244994584 0.13 20 -68.5658281604
+0.0200466042264 0.0868511373751 0.13 20 -71.3278462412
+0.0200466042264 0.0976778110089 0.13 20 -74.6397788333
+0.0200466042264 0.109854114199 0.13 20 -78.6346762074
+0.0200466042264 0.123548288826 0.13 20 -83.4837697271
+0.0200466042264 0.138949549437 0.13 20 -89.4090475414
+0.0200466042264 0.156270697655 0.13 20 -96.7004972994
+0.0200466042264 0.175751062485 0.13 20 -105.739970551
+0.0200466042264 0.19765980717 0.13 20 -117.034567992
+0.0200466042264 0.222299648253 0.13 20 -131.263935515
+0.0200466042264 0.250011038262 0.13 20 -149.348288503
+0.0200466042264 0.281176869797 0.13 20 -172.548082387
+0.0200466042264 0.316227766017 0.13 20 -202.61347797
+0.022973358499 0.001 0.13 20 -52.1045436753
+0.022973358499 0.00112465782212 0.13 20 -52.1244773959
+0.022973358499 0.00126485521686 0.13 20 -52.1469206788
+0.022973358499 0.00142252931349 0.13 20 -52.1721929134
+0.022973358499 0.00159985871961 0.13 20 -52.2006550469
+0.022973358499 0.00179929362329 0.13 20 -52.2327152303
+0.022973358499 0.00202358964773 0.13 20 -52.2688352925
+0.022973358499 0.00227584592607 0.13 20 -52.3095381799
+0.022973358499 0.0025595479227 0.13 20 -52.3554165246
+0.022973358499 0.00287861559235 0.13 20 -52.4071425361
+0.022973358499 0.00323745754282 0.13 20 -52.465479451
+0.022973358499 0.00364103194931 0.13 20 -52.5312948246
+0.022973358499 0.00409491506238 0.13 20 -52.6055760047
+0.022973358499 0.00460537825582 0.13 20 -52.6894482076
+0.022973358499 0.00517947467923 0.13 20 -52.7841957027
+0.022973358499 0.00582513671247 0.13 20 -52.891286733
+0.022973358499 0.0065512855686 0.13 20 -53.0124029396
+0.022973358499 0.00736795455966 0.13 20 -53.1494742458
+0.022973358499 0.00828642772855 0.13 20 -53.3047203823
+0.022973358499 0.00931939576234 0.13 20 -53.4807005356
+0.022973358499 0.0104811313415 0.13 20 -53.6803729714
+0.022973358499 0.0117876863479 0.13 20 -53.9071669668
+0.022973358499 0.0132571136559 0.13 20 -54.1650700053
+0.022973358499 0.0149097165718 0.13 20 -54.4587339797
+0.022973358499 0.0167683293681 0.13 20 -54.793605187
+0.022973358499 0.0188586327877 0.13 20 -55.1760842417
+0.022973358499 0.0212095088792 0.13 20 -55.6137237935
+0.022973358499 0.0238534400643 0.13 20 -56.1154742481
+0.022973358499 0.0268269579528 0.13 20 -56.6919907401
+0.022973358499 0.0301711481053 0.13 20 -57.3560186552
+0.022973358499 0.033932217719 0.13 20 -58.1228803929
+0.022973358499 0.0381621340795 0.13 20 -59.0110932889
+0.022973358499 0.0429193426013 0.13 20 -60.0431583531
+0.022973358499 0.0482695743768 0.13 20 -61.2465726608
+0.022973358499 0.0542867543932 0.13 20 -62.6551361922
+0.022973358499 0.0610540229659 0.13 20 -64.3106485152
+0.022973358499 0.0686648845004 0.13 20 -66.2651246238
+0.022973358499 0.0772244994584 0.13 20 -68.5837063242
+0.022973358499 0.0868511373751 0.13 20 -71.3485113864
+0.022973358499 0.0976778110089 0.13 20 -74.6637554828
+0.022973358499 0.109854114199 0.13 20 -78.6626139639
+0.022973358499 0.123548288826 0.13 20 -83.5164803868
+0.022973358499 0.138949549437 0.13 20 -89.4475551818
+0.022973358499 0.156270697655 0.13 20 -96.7461064766
+0.022973358499 0.175751062485 0.13 20 -105.794360034
+0.022973358499 0.19765980717 0.13 20 -117.099920933
+0.022973358499 0.222299648253 0.13 20 -131.343122362
+0.022973358499 0.250011038262 0.13 20 -149.445127583
+0.022973358499 0.281176869797 0.13 20 -172.667717399
+0.022973358499 0.316227766017 0.13 20 -202.762936349
+0.0263274116037 0.001 0.13 20 -52.1047280447
+0.0263274116037 0.00112465782212 0.13 20 -52.1246848057
+0.0263274116037 0.00126485521686 0.13 20 -52.1471540166
+0.0263274116037 0.00142252931349 0.13 20 -52.1724554305
+0.0263274116037 0.00159985871961 0.13 20 -52.2009504052
+0.0263274116037 0.00179929362329 0.13 20 -52.2330475547
+0.0263274116037 0.00202358964773 0.13 20 -52.2692092304
+0.0263274116037 0.00227584592607 0.13 20 -52.3099589685
+0.0263274116037 0.0025595479227 0.13 20 -52.3558900672
+0.0263274116037 0.00287861559235 0.13 20 -52.4076754888
+0.0263274116037 0.00323745754282 0.13 20 -52.4660793212
+0.0263274116037 0.00364103194931 0.13 20 -52.5319700825
+0.0263274116037 0.00409491506238 0.13 20 -52.6063362112
+0.0263274116037 0.00460537825582 0.13 20 -52.6903041592
+0.0263274116037 0.00517947467923 0.13 20 -52.7851595978
+0.0263274116037 0.00582513671247 0.13 20 -52.8923723617
+0.0263274116037 0.0065512855686 0.13 20 -53.0136259019
+0.0263274116037 0.00736795455966 0.13 20 -53.1508522017
+0.0263274116037 0.00828642772855 0.13 20 -53.306273341
+0.0263274116037 0.00931939576234 0.13 20 -53.4824511888
+0.0263274116037 0.0104811313415 0.13 20 -53.6823470805
+0.0263274116037 0.0117876863479 0.13 20 -53.9093938132
+0.0263274116037 0.0132571136559 0.13 20 -54.1675829161
+0.0263274116037 0.0149097165718 0.13 20 -54.4615709445
+0.0263274116037 0.0167683293681 0.13 20 -54.7968095845
+0.0263274116037 0.0188586327877 0.13 20 -55.1797057002
+0.0263274116037 0.0212095088792 0.13 20 -55.617819215
+0.0263274116037 0.0238534400643 0.13 20 -56.1201090344
+0.0263274116037 0.0268269579528 0.13 20 -56.6972402702
+0.0263274116037 0.0301711481053 0.13 20 -57.3619700765
+0.0263274116037 0.033932217719 0.13 20 -58.1296348079
+0.0263274116037 0.0381621340795 0.13 20 -59.0187684457
+0.0263274116037 0.0429193426013 0.13 20 -60.0518919782
+0.0263274116037 0.0482695743768 0.13 20 -61.256526623
+0.0263274116037 0.0542867543932 0.13 20 -62.6665017443
+0.0263274116037 0.0610540229659 0.13 20 -64.3236529481
+0.0263274116037 0.0686648845004 0.13 20 -66.2800397844
+0.0263274116037 0.0772244994584 0.13 20 -68.6008596091
+0.0263274116037 0.0868511373751 0.13 20 -71.3683000531
+0.0263274116037 0.0976778110089 0.13 20 -74.6866654355
+0.0263274116037 0.109854114199 0.13 20 -78.6892446234
+0.0263274116037 0.123548288826 0.13 20 -83.5475778988
+0.0263274116037 0.138949549437 0.13 20 -89.4840571472
+0.0263274116037 0.156270697655 0.13 20 -96.7892027514
+0.0263274116037 0.175751062485 0.13 20 -105.845576173
+0.0263274116037 0.19765980717 0.13 20 -117.161233927
+0.0263274116037 0.222299648253 0.13 20 -131.417123084
+0.0263274116037 0.250011038262 0.13 20 -149.535252019
+0.0263274116037 0.281176869797 0.13 20 -172.778581365
+0.0263274116037 0.316227766017 0.13 20 -202.900830274
+0.0301711481053 0.001 0.13 20 -52.1049088521
+0.0301711481053 0.00112465782212 0.13 20 -52.1248882038
+0.0301711481053 0.00126485521686 0.13 20 -52.1473828352
+0.0301711481053 0.00142252931349 0.13 20 -52.1727128559
+0.0301711481053 0.00159985871961 0.13 20 -52.2012400255
+0.0301711481053 0.00179929362329 0.13 20 -52.2333734111
+0.0301711481053 0.00202358964773 0.13 20 -52.2695758752
+0.0301711481053 0.00227584592607 0.13 20 -52.3103715311
+0.0301711481053 0.0025595479227 0.13 20 -52.3563543284
+0.0301711481053 0.00287861559235 0.13 20 -52.4081979651
+0.0301711481053 0.00323745754282 0.13 20 -52.4666673606
+0.0301711481053 0.00364103194931 0.13 20 -52.5326319737
+0.0301711481053 0.00409491506238 0.13 20 -52.607081307
+0.0301711481053 0.00460537825582 0.13 20 -52.691143018
+0.0301711481053 0.00517947467923 0.13 20 -52.7861041444
+0.0301711481053 0.00582513671247 0.13 20 -52.8934360714
+0.0301711481053 0.0065512855686 0.13 20 -53.0148240111
+0.0301711481053 0.00736795455966 0.13 20 -53.1522019501
+0.0301711481053 0.00828642772855 0.13 20 -53.3077942497
+0.0301711481053 0.00931939576234 0.13 20 -53.4841653819
+0.0301711481053 0.0104811313415 0.13 20 -53.684279656
+0.0301711481053 0.0117876863479 0.13 20 -53.911573275
+0.0301711481053 0.0132571136559 0.13 20 -54.170041676
+0.0301711481053 0.0149097165718 0.13 20 -54.4643459105
+0.0301711481053 0.0167683293681 0.13 20 -54.7999428514
+0.0301711481053 0.0188586327877 0.13 20 -55.1832453649
+0.0301711481053 0.0212095088792 0.13 20 -55.621820344
+0.0301711481053 0.0238534400643 0.13 20 -56.1246348185
+0.0301711481053 0.0268269579528 0.13 20 -56.7023634103
+0.0301711481053 0.0301711481053 0.13 20 -57.3677744579
+0.0301711481053 0.033932217719 0.13 20 -58.1362175377
+0.0301711481053 0.0381621340795 0.13 20 -59.0262423481
+0.0301711481053 0.0429193426013 0.13 20 -60.060388676
+0.0301711481053 0.0482695743768 0.13 20 -61.266200371
+0.0301711481053 0.0542867543932 0.13 20 -62.6775342379
+0.0301711481053 0.0610540229659 0.13 20 -64.3362594059
+0.0301711481053 0.0686648845004 0.13 20 -66.2944767052
+0.0301711481053 0.0772244994584 0.13 20 -68.6174347519
+0.0301711481053 0.0868511373751 0.13 20 -71.3873853863
+0.0301711481053 0.0976778110089 0.13 20 -74.7087140858
+0.0301711481053 0.109854114199 0.13 20 -78.7148132533
+0.0301711481053 0.123548288826 0.13 20 -83.5773565129
+0.0301711481053 0.138949549437 0.13 20 -89.5189091543
+0.0301711481053 0.156270697655 0.13 20 -96.8302193145
+0.0301711481053 0.175751062485 0.13 20 -105.894150679
+0.0301711481053 0.19765980717 0.13 20 -117.219165133
+0.0301711481053 0.222299648253 0.13 20 -131.48675974
+0.0301711481053 0.250011038262 0.13 20 -149.619698536
+0.0301711481053 0.281176869797 0.13 20 -172.881995357
+0.0301711481053 0.316227766017 0.13 20 -203.028862202
+0.0345760605598 0.001 0.13 20 -52.1050869397
+0.0345760605598 0.00112465782212 0.13 20 -52.125088538
+0.0345760605598 0.00126485521686 0.13 20 -52.1476082015
+0.0345760605598 0.00142252931349 0.13 20 -52.1729663905
+0.0345760605598 0.00159985871961 0.13 20 -52.2015252596
+0.0345760605598 0.00179929362329 0.13 20 -52.2336943213
+0.0345760605598 0.00202358964773 0.13 20 -52.2699369408
+0.0345760605598 0.00227584592607 0.13 20 -52.310777798
+0.0345760605598 0.0025595479227 0.13 20 -52.3568114825
+0.0345760605598 0.00287861559235 0.13 20 -52.4087124145
+0.0345760605598 0.00323745754282 0.13 20 -52.46724633
+0.0345760605598 0.00364103194931 0.13 20 -52.5332836099
+0.0345760605598 0.00409491506238 0.13 20 -52.6078148009
+0.0345760605598 0.00460537825582 0.13 20 -52.6919687414
+0.0345760605598 0.00517947467923 0.13 20 -52.7870338074
+0.0345760605598 0.00582513671247 0.13 20 -52.8944829014
+0.0345760605598 0.0065512855686 0.13 20 -53.0160029578
+0.0345760605598 0.00736795455966 0.13 20 -53.1535299203
+0.0345760605598 0.00828642772855 0.13 20 -53.3092903767
+0.0345760605598 0.00931939576234 0.13 20 -53.4858513365
+0.0345760605598 0.0104811313415 0.13 20 -53.6861800048
+0.0345760605598 0.0117876863479 0.13 20 -53.913715896
+0.0345760605598 0.0132571136559 0.13 20 -54.1724582413
+0.0345760605598 0.0149097165718 0.13 20 -54.4670724497
+0.0345760605598 0.0167683293681 0.13 20 -54.8030204116
+0.0345760605598 0.0188586327877 0.13 20 -55.1867207872
+0.0345760605598 0.0212095088792 0.13 20 -55.6257471824
+0.0345760605598 0.0238534400643 0.13 20 -56.1290744324
+0.0345760605598 0.0268269579528 0.13 20 -56.7073862712
+0.0345760605598 0.0301711481053 0.13 20 -57.3734617225
+0.0345760605598 0.033932217719 0.13 20 -58.1426629539
+0.0345760605598 0.0381621340795 0.13 20 -59.0335545812
+0.0345760605598 0.0429193426013 0.13 20 -60.0686941691
+0.0345760605598 0.0482695743768 0.13 20 -61.2756468892
+0.0345760605598 0.0542867543932 0.13 20 -62.6882952968
+0.0345760605598 0.0610540229659 0.13 20 -64.34853985
+0.0345760605598 0.0686648845004 0.13 20 -66.3085197965
+0.0345760605598 0.0772244994584 0.13 20 -68.6335312553
+0.0345760605598 0.0868511373751 0.13 20 -71.4058853183
+0.0345760605598 0.0976778110089 0.13 20 -74.7300420414
+0.0345760605598 0.109854114199 0.13 20 -78.7394885825
+0.0345760605598 0.123548288826 0.13 20 -83.6060201245
+0.0345760605598 0.138949549437 0.13 20 -89.5523594547
+0.0345760605598 0.156270697655 0.13 20 -96.8694608645
+0.0345760605598 0.175751062485 0.13 20 -105.940460747
+0.0345760605598 0.19765980717 0.13 20 -117.274185746
+0.0345760605598 0.222299648253 0.13 20 -131.552626609
+0.0345760605598 0.250011038262 0.13 20 -149.69922427
+0.0345760605598 0.281176869797 0.13 20 -172.978934402
+0.0345760605598 0.316227766017 0.13 20 -203.148302287
+0.0396240792581 0.001 0.13 20 -52.1052628663
+0.0396240792581 0.00112465782212 0.13 20 -52.125286437
+0.0396240792581 0.00126485521686 0.13 20 -52.1478308232
+0.0396240792581 0.00142252931349 0.13 20 -52.1732168308
+0.0396240792581 0.00159985871961 0.13 20 -52.2018070041
+0.0396240792581 0.00179929362329 0.13 20 -52.234011295
+0.0396240792581 0.00202358964773 0.13 20 -52.2702935638
+0.0396240792581 0.00227584592607 0.13 20 -52.3111790492
+0.0396240792581 0.0025595479227 0.13 20 -52.357262971
+0.0396240792581 0.00287861559235 0.13 20 -52.4092204611
+0.0396240792581 0.00323745754282 0.13 20 -52.4678180588
+0.0396240792581 0.00364103194931 0.13 20 -52.5339270532
+0.0396240792581 0.00409491506238 0.13 20 -52.6085390171
+0.0396240792581 0.00460537825582 0.13 20 -52.6927839502
+0.0396240792581 0.00517947467923 0.13 20 -52.7879515431
+0.0396240792581 0.00582513671247 0.13 20 -52.8955161878
+0.0396240792581 0.0065512855686 0.13 20 -53.0171665082
+0.0396240792581 0.00736795455966 0.13 20 -53.1548403656
+0.0396240792581 0.00828642772855 0.13 20 -53.3107665284
+0.0396240792581 0.00931939576234 0.13 20 -53.4875144872
+0.0396240792581 0.0104811313415 0.13 20 -53.6880542761
+0.0396240792581 0.0117876863479 0.13 20 -53.9158286395
+0.0396240792581 0.0132571136559 0.13 20 -54.1748405042
+0.0396240792581 0.0149097165718 0.13 20 -54.469759516
+0.0396240792581 0.0167683293681 0.13 20 -54.806052435
+0.0396240792581 0.0188586327877 0.13 20 -55.1901435333
+0.0396240792581 0.0212095088792 0.13 20 -55.6296129036
+0.0396240792581 0.0238534400643 0.13 20 -56.1334429049
+0.0396240792581 0.0268269579528 0.13 20 -56.712326031
+0.0396240792581 0.0301711481053 0.13 20 -57.3790515468
+0.0396240792581 0.033932217719 0.13 20 -58.1489936497
+0.0396240792581 0.0381621340795 0.13 20 -59.0407311583
+0.0396240792581 0.0429193426013 0.13 20 -60.0768385015
+0.0396240792581 0.0482695743768 0.13 20 -61.2849009983
+0.0396240792581 0.0542867543932 0.13 20 -62.6988254363
+0.0396240792581 0.0610540229659 0.13 20 -64.3605416296
+0.0396240792581 0.0686648845004 0.13 20 -66.3222246666
+0.0396240792581 0.0772244994584 0.13 20 -68.6492147851
+0.0396240792581 0.0868511373751 0.13 20 -71.4238778603
+0.0396240792581 0.0976778110089 0.13 20 -74.7507425957
+0.0396240792581 0.109854114199 0.13 20 -78.7633829894
+0.0396240792581 0.123548288826 0.13 20 -83.6337051612
+0.0396240792581 0.138949549437 0.13 20 -89.5845750631
+0.0396240792581 0.156270697655 0.13 20 -96.9071336871
+0.0396240792581 0.175751062485 0.13 20 -105.984763566
+0.0396240792581 0.19765980717 0.13 20 -117.326619577
+0.0396240792581 0.222299648253 0.13 20 -131.615135563
+0.0396240792581 0.250011038262 0.13 20 -149.774358679
+0.0396240792581 0.281176869797 0.13 20 -173.070086678
+0.0396240792581 0.316227766017 0.13 20 -203.260055486
+0.0454090961097 0.001 0.13 20 -52.1054371303
+0.0454090961097 0.00112465782212 0.13 20 -52.1254824618
+0.0454090961097 0.00126485521686 0.13 20 -52.1480513313
+0.0454090961097 0.00142252931349 0.13 20 -52.1734648868
+0.0454090961097 0.00159985871961 0.13 20 -52.202086058
+0.0454090961097 0.00179929362329 0.13 20 -52.2343252311
+0.0454090961097 0.00202358964773 0.13 20 -52.270646756
+0.0454090961097 0.00227584592607 0.13 20 -52.3115764235
+0.0454090961097 0.0025595479227 0.13 20 -52.357710076
+0.0454090961097 0.00287861559235 0.13 20 -52.409723548
+0.0454090961097 0.00323745754282 0.13 20 -52.4683841722
+0.0454090961097 0.00364103194931 0.13 20 -52.5345641332
+0.0454090961097 0.00409491506238 0.13 20 -52.6092560163
+0.0454090961097 0.00460537825582 0.13 20 -52.6935909657
+0.0454090961097 0.00517947467923 0.13 20 -52.7888599668
+0.0454090961097 0.00582513671247 0.13 20 -52.8965388779
+0.0454090961097 0.0065512855686 0.13 20 -53.0183179842
+0.0454090961097 0.00736795455966 0.13 20 -53.1561370322
+0.0454090961097 0.00828642772855 0.13 20 -53.3122269302
+0.0454090961097 0.00931939576234 0.13 20 -53.4891596023
+0.0454090961097 0.0104811313415 0.13 20 -53.6899078531
+0.0454090961097 0.0117876863479 0.13 20 -53.9179175862
+0.0454090961097 0.0132571136559 0.13 20 -54.1771953372
+0.0454090961097 0.0149097165718 0.13 20 -54.4724148825
+0.0454090961097 0.0167683293681 0.13 20 -54.8090477204
+0.0454090961097 0.0188586327877 0.13 20 -55.193523572
+0.0454090961097 0.0212095088792 0.13 20 -55.6334288142
+0.0454090961097 0.0238534400643 0.13 20 -56.1377530761
+0.0454090961097 0.0268269579528 0.13 20 -56.7171972917
+0.0454090961097 0.0301711481053 0.13 20 -57.3845605645
+0.0454090961097 0.033932217719 0.13 20 -58.1552286094
+0.0454090961097 0.0381621340795 0.13 20 -59.0477937952
+0.0454090961097 0.0429193426013 0.13 20 -60.0848465778
+0.0454090961097 0.0482695743768 0.13 20 -61.2939913457
+0.0454090961097 0.0542867543932 0.13 20 -62.7091577227
+0.0454090961097 0.0610540229659 0.13 20 -64.3723030641
+0.0454090961097 0.0686648845004 0.13 20 -66.3356359253
+0.0454090961097 0.0772244994584 0.13 20 -68.6645375449
+0.0454090961097 0.0868511373751 0.13 20 -71.4414244631
+0.0454090961097 0.0976778110089 0.13 20 -74.7708885655
+0.0454090961097 0.109854114199 0.13 20 -78.7865833972
+0.0454090961097 0.123548288826 0.13 20 -83.6605162328
+0.0454090961097 0.138949549437 0.13 20 -89.6156829955
+0.0454090961097 0.156270697655 0.13 20 -96.9433934815
+0.0454090961097 0.175751062485 0.13 20 -106.027251941
+0.0454090961097 0.19765980717 0.13 20 -117.376707936
+0.0454090961097 0.222299648253 0.13 20 -131.674591978
+0.0454090961097 0.250011038262 0.13 20 -149.845492648
+0.0454090961097 0.281176869797 0.13 20 -173.155958426
+0.0454090961097 0.316227766017 0.13 20 -203.36478546
+0.0520387110088 0.001 0.13 20 -52.1056104043
+0.0520387110088 0.00112465782212 0.13 20 -52.1256773688
+0.0520387110088 0.00126485521686 0.13 20 -52.1482705767
+0.0520387110088 0.00142252931349 0.13 20 -52.1737115157
+0.0520387110088 0.00159985871961 0.13 20 -52.2023634981
+0.0520387110088 0.00179929362329 0.13 20 -52.234637341
+0.0520387110088 0.00202358964773 0.13 20 -52.2709978801
+0.0520387110088 0.00227584592607 0.13 20 -52.3119714538
+0.0520387110088 0.0025595479227 0.13 20 -52.3581545219
+0.0520387110088 0.00287861559235 0.13 20 -52.4102236156
+0.0520387110088 0.00323745754282 0.13 20 -52.4689468531
+0.0520387110088 0.00364103194931 0.13 20 -52.5351973066
+0.0520387110088 0.00409491506238 0.13 20 -52.609968563
+0.0520387110088 0.00460537825582 0.13 20 -52.694392899
+0.0520387110088 0.00517947467923 0.13 20 -52.7897625801
+0.0520387110088 0.00582513671247 0.13 20 -52.897554913
+0.0520387110088 0.0065512855686 0.13 20 -53.0194618233
+0.0520387110088 0.00736795455966 0.13 20 -53.1574249159
+0.0520387110088 0.00828642772855 0.13 20 -53.313677208
+0.0520387110088 0.00931939576234 0.13 20 -53.4907930182
+0.0520387110088 0.0104811313415 0.13 20 -53.6917478741
+0.0520387110088 0.0117876863479 0.13 20 -53.9199907796
+0.0520387110088 0.0132571136559 0.13 20 -54.1795318066
+0.0520387110088 0.0149097165718 0.13 20 -54.4750487716
+0.0520387110088 0.0167683293681 0.13 20 -54.8120177983
+0.0520387110088 0.0188586327877 0.13 20 -55.1968739156
+0.0520387110088 0.0212095088792 0.13 20 -55.6372096066
+0.0520387110088 0.0238534400643 0.13 20 -56.1420215459
+0.0520387110088 0.0268269579528 0.13 20 -56.7220188235
+0.0520387110088 0.0301711481053 0.13 20 -57.3900100185
+0.0520387110088 0.033932217719 0.13 20 -58.1613919005
+0.0520387110088 0.0381621340795 0.13 20 -59.0547697943
+0.0520387110088 0.0429193426013 0.13 20 -60.0927494173
+0.0520387110088 0.0482695743768 0.13 20 -61.3029532369
+0.0520387110088 0.0542867543932 0.13 20 -62.7193324273
+0.0520387110088 0.0610540229659 0.13 20 -64.3838702057
+0.0520387110088 0.0686648845004 0.13 20 -66.3488063951
+0.0520387110088 0.0772244994584 0.13 20 -68.6795603383
+0.0520387110088 0.0868511373751 0.13 20 -71.458595411
+0.0520387110088 0.0976778110089 0.13 20 -74.7905615911
+0.0520387110088 0.109854114199 0.13 20 -78.8091851747
+0.0520387110088 0.123548288826 0.13 20 -83.6865654703
+0.0520387110088 0.138949549437 0.13 20 -89.6458160657
+0.0520387110088 0.156270697655 0.13 20 -96.9783988645
+0.0520387110088 0.175751062485 0.13 20 -106.068117043
+0.0520387110088 0.19765980717 0.13 20 -117.424683536
+0.0520387110088 0.222299648253 0.13 20 -131.731282178
+0.0520387110088 0.250011038262 0.13 20 -149.912982469
+0.0520387110088 0.281176869797 0.13 20 -173.236998271
+0.0520387110088 0.316227766017 0.13 20 -203.463064071
+0.0596362331659 0.001 0.13 20 -52.1057837352
+0.0596362331659 0.00112465782212 0.13 20 -52.1258723354
+0.0596362331659 0.00126485521686 0.13 20 -52.1484898839
+0.0596362331659 0.00142252931349 0.13 20 -52.1739582073
+0.0596362331659 0.00159985871961 0.13 20 -52.202641
+0.0596362331659 0.00179929362329 0.13 20 -52.2349495095
+0.0596362331659 0.00202358964773 0.13 20 -52.2713490563
+0.0596362331659 0.00227584592607 0.13 20 -52.3123665252
+0.0596362331659 0.0025595479227 0.13 20 -52.3585989919
+0.0596362331659 0.00287861559235 0.13 20 -52.4107236821
+0.0596362331659 0.00323745754282 0.13 20 -52.4695094973
+0.0596362331659 0.00364103194931 0.13 20 -52.5358303934
+0.0596362331659 0.00409491506238 0.13 20 -52.6106809553
+0.0596362331659 0.00460537825582 0.13 20 -52.695194586
+0.0596362331659 0.00517947467923 0.13 20 -52.7906648244
+0.0596362331659 0.00582513671247 0.13 20 -52.8985704164
+0.0596362331659 0.0065512855686 0.13 20 -53.0206049161
+0.0596362331659 0.00736795455966 0.13 20 -53.1587117722
+0.0596362331659 0.00828642772855 0.13 20 -53.3151260911
+0.0596362331659 0.00931939576234 0.13 20 -53.4924245616
+0.0596362331659 0.0104811313415 0.13 20 -53.6935854025
+0.0596362331659 0.0117876863479 0.13 20 -53.9220606777
+0.0596362331659 0.0132571136559 0.13 20 -54.1818639431
+0.0596362331659 0.0149097165718 0.13 20 -54.4776769886
+0.0596362331659 0.0167683293681 0.13 20 -54.8149804776
+0.0596362331659 0.0188586327877 0.13 20 -55.200214636
+0.0596362331659 0.0212095088792 0.13 20 -55.6409779111
+0.0596362331659 0.0238534400643 0.13 20 -56.1462738392
+0.0596362331659 0.0268269579528 0.13 20 -56.726819429
+0.0596362331659 0.0301711481053 0.13 20 -57.3954324283
+0.0596362331659 0.033932217719 0.13 20 -58.1675202628
+0.0596362331659 0.0381621340795 0.13 20 -59.0617006955
+0.0596362331659 0.0429193426013 0.13 20 -60.10059403
+0.0596362331659 0.0482695743768 0.13 20 -61.3118399309
+0.0596362331659 0.0542867543932 0.13 20 -62.7294099661
+0.0596362331659 0.0610540229659 0.13 20 -64.3953116954
+0.0596362331659 0.0686648845004 0.13 20 -66.3618142045
+0.0596362331659 0.0772244994584 0.13 20 -68.6943722873
+0.0596362331659 0.0868511373751 0.13 20 -71.475492629
+0.0596362331659 0.0976778110089 0.13 20 -74.8098785959
+0.0596362331659 0.109854114199 0.13 20 -78.8313229333
+0.0596362331659 0.123548288826 0.13 20 -83.7120084998
+0.0596362331659 0.138949549437 0.13 20 -89.6751550735
+0.0596362331659 0.156270697655 0.13 20 -97.0123610602
+0.0596362331659 0.175751062485 0.13 20 -106.107607216
+0.0596362331659 0.19765980717 0.13 20 -117.470840457
+0.0596362331659 0.222299648253 0.13 20 -131.785557166
+0.0596362331659 0.250011038262 0.13 20 -149.977250703
+0.0596362331659 0.281176869797 0.13 20 -173.313719621
+0.0596362331659 0.316227766017 0.13 20 -203.555521153
+0.0683429746295 0.001 0.13 20 -52.1059586905
+0.0683429746295 0.00112465782212 0.13 20 -52.1260691251
+0.0683429746295 0.00126485521686 0.13 20 -52.1487112362
+0.0683429746295 0.00142252931349 0.13 20 -52.1742071925
+0.0683429746295 0.00159985871961 0.13 20 -52.2029210733
+0.0683429746295 0.00179929362329 0.13 20 -52.2352645595
+0.0683429746295 0.00202358964773 0.13 20 -52.2717034601
+0.0683429746295 0.00227584592607 0.13 20 -52.3127652099
+0.0683429746295 0.0025595479227 0.13 20 -52.3590475045
+0.0683429746295 0.00287861559235 0.13 20 -52.4112282684
+0.0683429746295 0.00323745754282 0.13 20 -52.4700771909
+0.0683429746295 0.00364103194931 0.13 20 -52.5364691163
+0.0683429746295 0.00409491506238 0.13 20 -52.6113996317
+0.0683429746295 0.00460537825582 0.13 20 -52.6960032717
+0.0683429746295 0.00517947467923 0.13 20 -52.7915748524
+0.0683429746295 0.00582513671247 0.13 20 -52.899594563
+0.0683429746295 0.0065512855686 0.13 20 -53.0217575888
+0.0683429746295 0.00736795455966 0.13 20 -53.1600092239
+0.0683429746295 0.00828642772855 0.13 20 -53.3165866635
+0.0683429746295 0.00931939576234 0.13 20 -53.4940689629
+0.0683429746295 0.0104811313415 0.13 20 -53.6954370247
+0.0683429746295 0.0117876863479 0.13 20 -53.9241459595
+0.0683429746295 0.0132571136559 0.13 20 -54.1842127864
+0.0683429746295 0.0149097165718 0.13 20 -54.4803232372
+0.0683429746295 0.0167683293681 0.13 20 -54.8179624693
+0.0683429746295 0.0188586327877 0.13 20 -55.2035758419
+0.0683429746295 0.0212095088792 0.13 20 -55.6447676766
+0.0683429746295 0.0238534400643 0.13 20 -56.1505482491
+0.0683429746295 0.0268269579528 0.13 20 -56.7316423196
+0.0683429746295 0.0301711481053 0.13 20 -57.4008765786
+0.0683429746295 0.033932217719 0.13 20 -58.1736688046
+0.0683429746295 0.0381621340795 0.13 20 -59.0686487907
+0.0683429746295 0.0429193426013 0.13 20 -60.1084508818
+0.0683429746295 0.0482695743768 0.13 20 -61.3207312104
+0.0683429746295 0.0542867543932 0.13 20 -62.7394807642
+0.0683429746295 0.0610540229659 0.13 20 -64.4067301439
+0.0683429746295 0.0686648845004 0.13 20 -66.374775956
+0.0683429746295 0.0772244994584 0.13 20 -68.7091061118
+0.0683429746295 0.0868511373751 0.13 20 -71.4922674722
+0.0683429746295 0.0976778110089 0.13 20 -74.8290125732
+0.0683429746295 0.109854114199 0.13 20 -78.8531949112
+0.0683429746295 0.123548288826 0.13 20 -83.7370731733
+0.0683429746295 0.138949549437 0.13 20 -89.7039628175
+0.0683429746295 0.156270697655 0.13 20 -97.0455843796
+0.0683429746295 0.175751062485 0.13 20 -106.146076435
+0.0683429746295 0.19765980717 0.13 20 -117.515592533
+0.0683429746295 0.222299648253 0.13 20 -131.837903492
+0.0683429746295 0.250011038262 0.13 20 -150.038872916
+0.0683429746295 0.281176869797 0.13 20 -173.386807829
+0.0683429746295 0.316227766017 0.13 20 -203.642978368
+0.0783208786546 0.001 0.13 20 -52.1061374402
+0.0783208786546 0.00112465782212 0.13 20 -52.1262701783
+0.0783208786546 0.00126485521686 0.13 20 -52.1489373789
+0.0783208786546 0.00142252931349 0.13 20 -52.1744615594
+0.0783208786546 0.00159985871961 0.13 20 -52.2032071917
+0.0783208786546 0.00179929362329 0.13 20 -52.2355863989
+0.0783208786546 0.00202358964773 0.13 20 -52.2720654876
+0.0783208786546 0.00227584592607 0.13 20 -52.3131724535
+0.0783208786546 0.0025595479227 0.13 20 -52.359505624
+0.0783208786546 0.00287861559235 0.13 20 -52.4117436349
+0.0783208786546 0.00323745754282 0.13 20 -52.4706569778
+0.0783208786546 0.00364103194931 0.13 20 -52.5371214011
+0.0783208786546 0.00409491506238 0.13 20 -52.6121335114
+0.0783208786546 0.00460537825582 0.13 20 -52.6968289933
+0.0783208786546 0.00517947467923 0.13 20 -52.7925039607
+0.0783208786546 0.00582513671247 0.13 20 -52.9006400677
+0.0783208786546 0.0065512855686 0.13 20 -53.0229341543
+0.0783208786546 0.00736795455966 0.13 20 -53.1613333845
+0.0783208786546 0.00828642772855 0.13 20 -53.3180770681
+0.0783208786546 0.00931939576234 0.13 20 -53.4957466533
+0.0783208786546 0.0104811313415 0.13 20 -53.6973257525
+0.0783208786546 0.0117876863479 0.13 20 -53.9262725484
+0.0783208786546 0.0132571136559 0.13 20 -54.1866075459
+0.0783208786546 0.0149097165718 0.13 20 -54.4830204373
+0.0783208786546 0.0167683293681 0.13 20 -54.8210008858
+0.0783208786546 0.0188586327877 0.13 20 -55.2069993844
+0.0783208786546 0.0212095088792 0.13 20 -55.6486261152
+0.0783208786546 0.0238534400643 0.13 20 -56.1548980566
+0.0783208786546 0.0268269579528 0.13 20 -56.7365476529
+0.0783208786546 0.0301711481053 0.13 20 -57.4064104273
+0.0783208786546 0.033932217719 0.13 20 -58.1799143406
+0.0783208786546 0.0381621340795 0.13 20 -59.0757009652
+0.0783208786546 0.0429193426013 0.13 20 -60.116418325
+0.0783208786546 0.0482695743768 0.13 20 -61.3297385075
+0.0783208786546 0.0542867543932 0.13 20 -62.749671202
+0.0783208786546 0.0610540229659 0.13 20 -64.4182690523
+0.0783208786546 0.0686648845004 0.13 20 -66.3878548095
+0.0783208786546 0.0772244994584 0.13 20 -68.7239476087
+0.0783208786546 0.0868511373751 0.13 20 -71.5091318881
+0.0783208786546 0.0976778110089 0.13 20 -74.8482057901
+0.0783208786546 0.109854114199 0.13 20 -78.8750786731
+0.0783208786546 0.123548288826 0.13 20 -83.7620783352
+0.0783208786546 0.138949549437 0.13 20 -89.7326066626
+0.0783208786546 0.156270697655 0.13 20 -97.0784935363
+0.0783208786546 0.175751062485 0.13 20 -106.184017604
+0.0783208786546 0.19765980717 0.13 20 -117.55951428
+0.0783208786546 0.222299648253 0.13 20 -131.888994001
+0.0783208786546 0.250011038262 0.13 20 -150.098641253
+0.0783208786546 0.281176869797 0.13 20 -173.457200767
+0.0783208786546 0.316227766017 0.13 20 -203.726552729
+0.0897555318082 0.001 0.13 20 -52.1063227553
+0.0897555318082 0.00112465782212 0.13 20 -52.1264786124
+0.0897555318082 0.00126485521686 0.13 20 -52.1491718186
+0.0897555318082 0.00142252931349 0.13 20 -52.1747252526
+0.0897555318082 0.00159985871961 0.13 20 -52.2035037927
+0.0897555318082 0.00179929362329 0.13 20 -52.2359200195
+0.0897555318082 0.00202358964773 0.13 20 -52.2724407551
+0.0897555318082 0.00227584592607 0.13 20 -52.3135945748
+0.0897555318082 0.0025595479227 0.13 20 -52.3599804595
+0.0897555318082 0.00287861559235 0.13 20 -52.4122777808
+0.0897555318082 0.00323745754282 0.13 20 -52.4712578592
+0.0897555318082 0.00364103194931 0.13 20 -52.5377973772
+0.0897555318082 0.00409491506238 0.13 20 -52.612893994
+0.0897555318082 0.00460537825582 0.13 20 -52.6976845813
+0.0897555318082 0.00517947467923 0.13 20 -52.7934665913
+0.0897555318082 0.00582513671247 0.13 20 -52.9017231884
+0.0897555318082 0.0065512855686 0.13 20 -53.024152917
+0.0897555318082 0.00736795455966 0.13 20 -53.1627048654
+0.0897555318082 0.00828642772855 0.13 20 -53.3196205176
+0.0897555318082 0.00931939576234 0.13 20 -53.4974837793
+0.0897555318082 0.0104811313415 0.13 20 -53.6992810429
+0.0897555318082 0.0117876863479 0.13 20 -53.9284736381
+0.0897555318082 0.0132571136559 0.13 20 -54.1890856355
+0.0897555318082 0.0149097165718 0.13 20 -54.4858107713
+0.0897555318082 0.0167683293681 0.13 20 -54.8241433005
+0.0897555318082 0.0188586327877 0.13 20 -55.2105389365
+0.0897555318082 0.0212095088792 0.13 20 -55.6526138055
+0.0897555318082 0.0238534400643 0.13 20 -56.1593916656
+0.0897555318082 0.0268269579528 0.13 20 -56.7416127088
+0.0897555318082 0.0301711481053 0.13 20 -57.4121213321
+0.0897555318082 0.033932217719 0.13 20 -58.1863556859
+0.0897555318082 0.0381621340795 0.13 20 -59.0829690776
+0.0897555318082 0.0429193426013 0.13 20 -60.1246230905
+0.0897555318082 0.0482695743768 0.13 20 -61.3390055399
+0.0897555318082 0.0542867543932 0.13 20 -62.7601444375
+0.0897555318082 0.0610540229659 0.13 20 -64.430113877
+0.0897555318082 0.0686648845004 0.13 20 -66.4012618615
+0.0897555318082 0.0772244994584 0.13 20 -68.7391374407
+0.0897555318082 0.0868511373751 0.13 20 -71.5263607408
+0.0897555318082 0.0976778110089 0.13 20 -74.8677728133
+0.0897555318082 0.109854114199 0.13 20 -78.8973350569
+0.0897555318082 0.123548288826 0.13 20 -83.7874389876
+0.0897555318082 0.138949549437 0.13 20 -89.7615653237
+0.0897555318082 0.156270697655 0.13 20 -97.1116425916
+0.0897555318082 0.175751062485 0.13 20 -106.222074414
+0.0897555318082 0.19765980717 0.13 20 -117.603356689
+0.0897555318082 0.222299648253 0.13 20 -131.939709022
+0.0897555318082 0.250011038262 0.13 20 -150.157593086
+0.0897555318082 0.281176869797 0.13 20 -173.52612795
+0.0897555318082 0.316227766017 0.13 20 -203.807710662
+0.102859615834 0.001 0.13 20 -52.1065179049
+0.102859615834 0.00112465782212 0.13 20 -52.1266981045
+0.102859615834 0.00126485521686 0.13 20 -52.1494186919
+0.102859615834 0.00142252931349 0.13 20 -52.1750029257
+0.102859615834 0.00159985871961 0.13 20 -52.2038161115
+0.102859615834 0.00179929362329 0.13 20 -52.2362713115
+0.102859615834 0.00202358964773 0.13 20 -52.272835889
+0.102859615834 0.00227584592607 0.13 20 -52.3140390296
+0.102859615834 0.0025595479227 0.13 20 -52.3604804004
+0.102859615834 0.00287861559235 0.13 20 -52.4128401464
+0.102859615834 0.00323745754282 0.13 20 -52.4718904585
+0.102859615834 0.00364103194931 0.13 20 -52.5385090002
+0.102859615834 0.00409491506238 0.13 20 -52.6136945359
+0.102859615834 0.00460537825582 0.13 20 -52.6985851823
+0.102859615834 0.00517947467923 0.13 20 -52.7944797957
+0.102859615834 0.00582513671247 0.13 20 -52.9028631232
+0.102859615834 0.0065512855686 0.13 20 -53.0254354944
+0.102859615834 0.00736795455966 0.13 20 -53.1641480123
+0.102859615834 0.00828642772855 0.13 20 -53.3212444347
+0.102859615834 0.00931939576234 0.13 20 -53.4993112359
+0.102859615834 0.0104811313415 0.13 20 -53.7013377103
+0.102859615834 0.0117876863479 0.13 20 -53.9307884694
+0.102859615834 0.0132571136559 0.13 20 -54.1916912973
+0.102859615834 0.0149097165718 0.13 20 -54.4887441357
+0.102859615834 0.0167683293681 0.13 20 -54.8274460065
+0.102859615834 0.0188586327877 0.13 20 -55.214258033
+0.102859615834 0.0212095088792 0.13 20 -55.6568024877
+0.102859615834 0.0238534400643 0.13 20 -56.1641101221
+0.102859615834 0.0268269579528 0.13 20 -56.746929098
+0.102859615834 0.0301711481053 0.13 20 -57.4181129118
+0.102859615834 0.033932217719 0.13 20 -58.1931101261
+0.102859615834 0.0381621340795 0.13 20 -59.0905859902
+0.102859615834 0.0429193426013 0.13 20 -60.1332158242
+0.102859615834 0.0482695743768 0.13 20 -61.3487032945
+0.102859615834 0.0542867543932 0.13 20 -62.7710947721
+0.102859615834 0.0610540229659 0.13 20 -64.4424857045
+0.102859615834 0.0686648845004 0.13 20 -66.4152490511
+0.102859615834 0.0772244994584 0.13 20 -68.7549631887
+0.102859615834 0.0868511373751 0.13 20 -71.5442829199
+0.102859615834 0.0976778110089 0.13 20 -74.8880905844
+0.102859615834 0.109854114199 0.13 20 -78.920397127
+0.102859615834 0.123548288826 0.13 20 -83.8136540395
+0.102859615834 0.138949549437 0.13 20 -89.7914153471
+0.102859615834 0.156270697655 0.13 20 -97.1457001417
+0.102859615834 0.175751062485 0.13 20 -106.261025265
+0.102859615834 0.19765980717 0.13 20 -117.648030026
+0.102859615834 0.222299648253 0.13 20 -131.991118347
+0.102859615834 0.250011038262 0.13 20 -150.216992754
+0.102859615834 0.281176869797 0.13 20 -173.595093057
+0.102859615834 0.316227766017 0.13 20 -203.888253117
+0.117876863479 0.001 0.13 20 -52.1067264458
+0.117876863479 0.00112465782212 0.13 20 -52.1269326558
+0.117876863479 0.00126485521686 0.13 20 -52.1496824999
+0.117876863479 0.00142252931349 0.13 20 -52.1752996421
+0.117876863479 0.00159985871961 0.13 20 -52.2041498448
+0.117876863479 0.00179929362329 0.13 20 -52.2366466837
+0.117876863479 0.00202358964773 0.13 20 -52.2732581006
+0.117876863479 0.00227584592607 0.13 20 -52.3145139316
+0.117876863479 0.0025595479227 0.13 20 -52.3610145766
+0.117876863479 0.00287861559235 0.13 20 -52.4134410054
+0.117876863479 0.00323745754282 0.13 20 -52.4725663379
+0.117876863479 0.00364103194931 0.13 20 -52.5392692835
+0.117876863479 0.00409491506238 0.13 20 -52.6145497847
+0.117876863479 0.00460537825582 0.13 20 -52.6995472856
+0.117876863479 0.00517947467923 0.13 20 -52.7955621382
+0.117876863479 0.00582513671247 0.13 20 -52.9040807752
+0.117876863479 0.0065512855686 0.13 20 -53.0268054269
+0.117876863479 0.00736795455966 0.13 20 -53.1656893398
+0.117876863479 0.00828642772855 0.13 20 -53.3229786901
+0.117876863479 0.00931939576234 0.13 20 -53.5012626811
+0.117876863479 0.0104811313415 0.13 20 -53.7035336897
+0.117876863479 0.0117876863479 0.13 20 -53.9332598092
+0.117876863479 0.0132571136559 0.13 20 -54.1944727599
+0.117876863479 0.0149097165718 0.13 20 -54.4918749365
+0.117876863479 0.0167683293681 0.13 20 -54.8309704025
+0.117876863479 0.0188586327877 0.13 20 -55.2182259936
+0.117876863479 0.0212095088792 0.13 20 -55.6612704623
+0.117876863479 0.0238534400643 0.13 20 -56.1691419189
+0.117876863479 0.0268269579528 0.13 20 -56.7525968938
+0.117876863479 0.0301711481053 0.13 20 -57.4244984143
+0.117876863479 0.033932217719 0.13 20 -58.2003059172
+0.117876863479 0.0381621340795 0.13 20 -59.0986970844
+0.117876863479 0.0429193426013 0.13 20 -60.1423614824
+0.117876863479 0.0482695743768 0.13 20 -61.3590191469
+0.117876863479 0.0542867543932 0.13 20 -62.7827353151
+0.117876863479 0.0610540229659 0.13 20 -64.4556272554
+0.117876863479 0.0686648845004 0.13 20 -66.4300932671
+0.117876863479 0.0772244994584 0.13 20 -68.7717412892
+0.117876863479 0.0868511373751 0.13 20 -71.5632607938
+0.117876863479 0.0976778110089 0.13 20 -74.9095750232
+0.117876863479 0.109854114199 0.13 20 -78.9447435047
+0.117876863479 0.123548288826 0.13 20 -83.841275876
+0.117876863479 0.138949549437 0.13 20 -89.8227963528
+0.117876863479 0.156270697655 0.13 20 -97.1814095757
+0.117876863479 0.175751062485 0.13 20 -106.301737784
+0.117876863479 0.19765980717 0.13 20 -117.694551723
+0.117876863479 0.222299648253 0.13 20 -132.044421488
+0.117876863479 0.250011038262 0.13 20 -150.278263016
+0.117876863479 0.281176869797 0.13 20 -173.665795267
+0.117876863479 0.316227766017 0.13 20 -203.970225273
+0.135086591867 0.001 0.13 20 -52.1069519354
+0.135086591867 0.00112465782212 0.13 20 -52.1271862683
+0.135086591867 0.00126485521686 0.13 20 -52.1499677446
+0.135086591867 0.00142252931349 0.13 20 -52.1756204669
+0.135086591867 0.00159985871961 0.13 20 -52.2045106909
+0.135086591867 0.00179929362329 0.13 20 -52.2370525475
+0.135086591867 0.00202358964773 0.13 20 -52.2737146032
+0.135086591867 0.00227584592607 0.13 20 -52.3150273974
+0.135086591867 0.0025595479227 0.13 20 -52.3615921217
+0.135086591867 0.00287861559235 0.13 20 -52.4140906369
+0.135086591867 0.00323745754282 0.13 20 -52.473297066
+0.135086591867 0.00364103194931 0.13 20 -52.540091248
+0.135086591867 0.00409491506238 0.13 20 -52.6154743978
+0.135086591867 0.00460537825582 0.13 20 -52.7005873924
+0.135086591867 0.00517947467923 0.13 20 -52.7967321979
+0.135086591867 0.00582513671247 0.13 20 -52.9053970664
+0.135086591867 0.0065512855686 0.13 20 -53.0282862786
+0.135086591867 0.00736795455966 0.13 20 -53.1673553925
+0.135086591867 0.00828642772855 0.13 20 -53.3248531914
+0.135086591867 0.00931939576234 0.13 20 -53.5033718202
+0.135086591867 0.0104811313415 0.13 20 -53.7059069753
+0.135086591867 0.0117876863479 0.13 20 -53.9359304987
+0.135086591867 0.0132571136559 0.13 20 -54.1974783458
+0.135086591867 0.0149097165718 0.13 20 -54.4952576991
+0.135086591867 0.0167683293681 0.13 20 -54.8347780376
+0.135086591867 0.0188586327877 0.13 20 -55.2225123282
+0.135086591867 0.0212095088792 0.13 20 -55.6660962706
+0.135086591867 0.0238534400643 0.13 20 -56.1745758545
+0.135086591867 0.0268269579528 0.13 20 -56.7587165576
+0.135086591867 0.0301711481053 0.13 20 -57.4313915801
+0.135086591867 0.033932217719 0.13 20 -58.2080719428
+0.135086591867 0.0381621340795 0.13 20 -59.1074485402
+0.135086591867 0.0429193426013 0.13 20 -60.1522260392
+0.135086591867 0.0482695743768 0.13 20 -61.3701417719
+0.135086591867 0.0542867543932 0.13 20 -62.7952808372
+0.135086591867 0.0610540229659 0.13 20 -64.4697833785
+0.135086591867 0.0686648845004 0.13 20 -66.4460741283
+0.135086591867 0.0772244994584 0.13 20 -68.7897916875
+0.135086591867 0.0868511373751 0.13 20 -71.583661251
+0.135086591867 0.0976778110089 0.13 20 -74.9326478867
+0.135086591867 0.109854114199 0.13 20 -78.9708603706
+0.135086591867 0.123548288826 0.13 20 -83.8708667019
+0.135086591867 0.138949549437 0.13 20 -89.8563607619
+0.135086591867 0.156270697655 0.13 20 -97.2195310363
+0.135086591867 0.175751062485 0.13 20 -106.345101622
+0.135086591867 0.19765980717 0.13 20 -117.743968322
+0.135086591867 0.222299648253 0.13 20 -132.100856655
+0.135086591867 0.250011038262 0.13 20 -150.342878458
+0.135086591867 0.281176869797 0.13 20 -173.740003748
+0.135086591867 0.316227766017 0.13 20 -204.055767837
+0.154808897723 0.001 0.13 20 -52.1071976297
+0.154808897723 0.00112465782212 0.13 20 -52.1274626047
+0.154808897723 0.00126485521686 0.13 20 -52.1502785467
+0.154808897723 0.00142252931349 0.13 20 -52.1759700359
+0.154808897723 0.00159985871961 0.13 20 -52.2049038655
+0.154808897723 0.00179929362329 0.13 20 -52.2374947711
+0.154808897723 0.00202358964773 0.13 20 -52.2742119999
+0.154808897723 0.00227584592607 0.13 20 -52.3155868575
+0.154808897723 0.0025595479227 0.13 20 -52.3622213974
+0.154808897723 0.00287861559235 0.13 20 -52.414798451
+0.154808897723 0.00323745754282 0.13 20 -52.474093234
+0.154808897723 0.00364103194931 0.13 20 -52.5409868158
+0.154808897723 0.00409491506238 0.13 20 -52.6164817963
+0.154808897723 0.00460537825582 0.13 20 -52.7017206131
+0.154808897723 0.00517947467923 0.13 20 -52.79800699
+0.154808897723 0.00582513671247 0.13 20 -52.9068311596
+0.154808897723 0.0065512855686 0.13 20 -53.0298996343
+0.154808897723 0.00736795455966 0.13 20 -53.1691704883
+0.154808897723 0.00828642772855 0.13 20 -53.3268953421
+0.154808897723 0.00931939576234 0.13 20 -53.5056695405
+0.154808897723 0.0104811313415 0.13 20 -53.7084923912
+0.154808897723 0.0117876863479 0.13 20 -53.938839813
+0.154808897723 0.0132571136559 0.13 20 -54.2007523655
+0.154808897723 0.0149097165718 0.13 20 -54.4989424341
+0.154808897723 0.0167683293681 0.13 20 -54.8389253813
+0.154808897723 0.0188586327877 0.13 20 -55.2271808315
+0.154808897723 0.0212095088792 0.13 20 -55.6713520232
+0.154808897723 0.0238534400643 0.13 20 -56.1804934911
+0.154808897723 0.0268269579528 0.13 20 -56.765380408
+0.154808897723 0.0301711481053 0.13 20 -57.4388969872
+0.154808897723 0.033932217719 0.13 20 -58.2165267753
+0.154808897723 0.0381621340795 0.13 20 -59.1169749354
+0.154808897723 0.0429193426013 0.13 20 -60.162962415
+0.154808897723 0.0482695743768 0.13 20 -61.3822451583
+0.154808897723 0.0542867543932 0.13 20 -62.8089295891
+0.154808897723 0.0610540229659 0.13 20 -64.4851803435
+0.154808897723 0.0686648845004 0.13 20 -66.4634503661
+0.154808897723 0.0772244994584 0.13 20 -68.8094108576
+0.154808897723 0.0868511373751 0.13 20 -71.6058248213
+0.154808897723 0.0976778110089 0.13 20 -74.9577013562
+0.154808897723 0.109854114199 0.13 20 -78.9992007578
+0.154808897723 0.123548288826 0.13 20 -83.9029516297
+0.154808897723 0.138949549437 0.13 20 -89.8927195756
+0.154808897723 0.156270697655 0.13 20 -97.2607785463
+0.154808897723 0.175751062485 0.13 20 -106.391955276
+0.154808897723 0.19765980717 0.13 20 -117.79726993
+0.154808897723 0.222299648253 0.13 20 -132.161600268
+0.154808897723 0.250011038262 0.13 20 -150.412246732
+0.154808897723 0.281176869797 0.13 20 -173.81941634
+0.154808897723 0.316227766017 0.13 20 -204.146947401
+0.177410611097 0.001 0.13 20 -52.1074662313
+0.177410611097 0.00112465782212 0.13 20 -52.1277647054
+0.177410611097 0.00126485521686 0.13 20 -52.1506183266
+0.177410611097 0.00142252931349 0.13 20 -52.1763521972
+0.177410611097 0.00159985871961 0.13 20 -52.2053336982
+0.177410611097 0.00179929362329 0.13 20 -52.2379782263
+0.177410611097 0.00202358964773 0.13 20 -52.2747557728
+0.177410611097 0.00227584592607 0.13 20 -52.3161984807
+0.177410611097 0.0025595479227 0.13 20 -52.3629093462
+0.177410611097 0.00287861559235 0.13 20 -52.4155722617
+0.177410611097 0.00323745754282 0.13 20 -52.4749636375
+0.177410611097 0.00364103194931 0.13 20 -52.541965888
+0.177410611097 0.00409491506238 0.13 20 -52.6175831277
+0.177410611097 0.00460537825582 0.13 20 -52.7029595001
+0.177410611097 0.00517947467923 0.13 20 -52.7994006506
+0.177410611097 0.00582513671247 0.13 20 -52.9083989771
+0.177410611097 0.0065512855686 0.13 20 -53.0316634321
+0.177410611097 0.00736795455966 0.13 20 -53.1711548404
+0.177410611097 0.00828642772855 0.13 20 -53.3291279241
+0.177410611097 0.00931939576234 0.13 20 -53.5081815268
+0.177410611097 0.0104811313415 0.13 20 -53.7113189037
+0.177410611097 0.0117876863479 0.13 20 -53.94202043
+0.177410611097 0.0132571136559 0.13 20 -54.2043316983
+0.177410611097 0.0149097165718 0.13 20 -54.5029707811
+0.177410611097 0.0167683293681 0.13 20 -54.8434594712
+0.177410611097 0.0188586327877 0.13 20 -55.2322846678
+0.177410611097 0.0212095088792 0.13 20 -55.6770978467
+0.177410611097 0.0238534400643 0.13 20 -56.1869628773
+0.177410611097 0.0268269579528 0.13 20 -56.7726655209
+0.177410611097 0.0301711481053 0.13 20 -57.4471020141
+0.177410611097 0.033932217719 0.13 20 -58.2257695734
+0.177410611097 0.0381621340795 0.13 20 -59.1273889248
+0.177410611097 0.0429193426013 0.13 20 -60.1746987616
+0.177410611097 0.0482695743768 0.13 20 -61.3954752984
+0.177410611097 0.0542867543932 0.13 20 -62.8238481583
+0.177410611097 0.0610540229659 0.13 20 -64.5020085892
+0.177410611097 0.0686648845004 0.13 20 -66.4824401375
+0.177410611097 0.0772244994584 0.13 20 -68.8308492946
+0.177410611097 0.0868511373751 0.13 20 -71.6300398912
+0.177410611097 0.0976778110089 0.13 20 -74.9850684295
+0.177410611097 0.109854114199 0.13 20 -79.0301504661
+0.177410611097 0.123548288826 0.13 20 -83.9379793205
+0.177410611097 0.138949549437 0.13 20 -89.9323967745
+0.177410611097 0.156270697655 0.13 20 -97.3057669709
+0.177410611097 0.175751062485 0.13 20 -106.443024129
+0.177410611097 0.19765980717 0.13 20 -117.855317467
+0.177410611097 0.222299648253 0.13 20 -132.227681019
+0.177410611097 0.250011038262 0.13 20 -150.487606351
+0.177410611097 0.281176869797 0.13 20 -173.905536971
+0.177410611097 0.316227766017 0.13 20 -204.245607978
+0.203312118313 0.001 0.13 20 -52.1077597269
+0.203312118313 0.00112465782212 0.13 20 -52.1280948055
+0.203312118313 0.00126485521686 0.13 20 -52.150989599
+0.203312118313 0.00142252931349 0.13 20 -52.1767697806
+0.203312118313 0.00159985871961 0.13 20 -52.205803373
+0.203312118313 0.00179929362329 0.13 20 -52.2385064959
+0.203312118313 0.00202358964773 0.13 20 -52.2753499538
+0.203312118313 0.00227584592607 0.13 20 -52.3168668048
+0.203312118313 0.0025595479227 0.13 20 -52.3636610755
+0.203312118313 0.00287861559235 0.13 20 -52.4164178182
+0.203312118313 0.00323745754282 0.13 20 -52.4759147488
+0.203312118313 0.00364103194931 0.13 20 -52.5430357519
+0.203312118313 0.00409491506238 0.13 20 -52.618786598
+0.203312118313 0.00460537825582 0.13 20 -52.7043132954
+0.203312118313 0.00517947467923 0.13 20 -52.8009235905
+0.203312118313 0.00582513671247 0.13 20 -52.9101122486
+0.203312118313 0.0065512855686 0.13 20 -53.0335908904
+0.203312118313 0.00736795455966 0.13 20 -53.1733233488
+0.203312118313 0.00828642772855 0.13 20 -53.331567738
+0.203312118313 0.00931939576234 0.13 20 -53.5109267282
+0.203312118313 0.0104811313415 0.13 20 -53.7144078931
+0.203312118313 0.0117876863479 0.13 20 -53.945496483
+0.203312118313 0.0132571136559 0.13 20 -54.2082435977
+0.203312118313 0.0149097165718 0.13 20 -54.5073735327
+0.203312118313 0.0167683293681 0.13 20 -54.8484151184
+0.203312118313 0.0188586327877 0.13 20 -55.2378632173
+0.203312118313 0.0212095088792 0.13 20 -55.683378323
+0.203312118313 0.0238534400643 0.13 20 -56.1940345256
+0.203312118313 0.0268269579528 0.13 20 -56.7806291812
+0.203312118313 0.0301711481053 0.13 20 -57.4560716949
+0.203312118313 0.033932217719 0.13 20 -58.2358742561
+0.203312118313 0.0381621340795 0.13 20 -59.1387746384
+0.203312118313 0.0429193426013 0.13 20 -60.1875309747
+0.203312118313 0.0482695743768 0.13 20 -61.4099416837
+0.203312118313 0.0542867543932 0.13 20 -62.840161799
+0.203312118313 0.0610540229659 0.13 20 -64.5204117092
+0.203312118313 0.0686648845004 0.13 20 -66.5032084591
+0.203312118313 0.0772244994584 0.13 20 -68.8542971497
+0.203312118313 0.0868511373751 0.13 20 -71.6565262446
+0.203312118313 0.0976778110089 0.13 20 -75.0150040126
+0.203312118313 0.109854114199 0.13 20 -79.0640062732
+0.203312118313 0.123548288826 0.13 20 -83.9762967893
+0.203312118313 0.138949549437 0.13 20 -89.9758000679
+0.203312118313 0.156270697655 0.13 20 -97.3549779018
+0.203312118313 0.175751062485 0.13 20 -106.498880448
+0.203312118313 0.19765980717 0.13 20 -117.918795472
+0.203312118313 0.222299648253 0.13 20 -132.299923806
+0.203312118313 0.250011038262 0.13 20 -150.569959528
+0.203312118313 0.281176869797 0.13 20 -173.999594447
+0.203312118313 0.316227766017 0.13 20 -204.353271675
+0.232995181052 0.001 0.13 20 -52.1080793105
+0.232995181052 0.00112465782212 0.13 20 -52.1284542486
+0.232995181052 0.00126485521686 0.13 20 -52.1513938759
+0.232995181052 0.00142252931349 0.13 20 -52.1772244871
+0.232995181052 0.00159985871961 0.13 20 -52.2063148046
+0.232995181052 0.00179929362329 0.13 20 -52.2390817349
+0.232995181052 0.00202358964773 0.13 20 -52.2759969684
+0.232995181052 0.00227584592607 0.13 20 -52.3175945604
+0.232995181052 0.0025595479227 0.13 20 -52.3644796598
+0.232995181052 0.00287861559235 0.13 20 -52.4173385824
+0.232995181052 0.00323745754282 0.13 20 -52.4769504667
+0.232995181052 0.00364103194931 0.13 20 -52.5442007994
+0.232995181052 0.00409491506238 0.13 20 -52.6200971551
+0.232995181052 0.00460537825582 0.13 20 -52.7057875746
+0.232995181052 0.00517947467923 0.13 20 -52.8025820942
+0.232995181052 0.00582513671247 0.13 20 -52.9119780597
+0.232995181052 0.0065512855686 0.13 20 -53.0356900005
+0.232995181052 0.00736795455966 0.13 20 -53.1756850292
+0.232995181052 0.00828642772855 0.13 20 -53.3342249593
+0.232995181052 0.00931939576234 0.13 20 -53.5139166345
+0.232995181052 0.0104811313415 0.13 20 -53.7177723393
+0.232995181052 0.0117876863479 0.13 20 -53.9492826439
+0.232995181052 0.0132571136559 0.13 20 -54.2125046579
+0.232995181052 0.0149097165718 0.13 20 -54.512169471
+0.232995181052 0.0167683293681 0.13 20 -54.8538135981
+0.232995181052 0.0188586327877 0.13 20 -55.2439406005
+0.232995181052 0.0212095088792 0.13 20 -55.6902208255
+0.232995181052 0.0238534400643 0.13 20 -56.2017395359
+0.232995181052 0.0268269579528 0.13 20 -56.7893067674
+0.232995181052 0.0301711481053 0.13 20 -57.4658463318
+0.232995181052 0.033932217719 0.13 20 -58.2468868068
+0.232995181052 0.0381621340795 0.13 20 -59.1511846349
+0.232995181052 0.0429193426013 0.13 20 -60.2015192477
+0.232995181052 0.0482695743768 0.13 20 -61.4257134049
+0.232995181052 0.0542867543932 0.13 20 -62.8579500108
+0.232995181052 0.0610540229659 0.13 20 -64.5404814338
+0.232995181052 0.0686648845004 0.13 20 -66.5258615005
+0.232995181052 0.0772244994584 0.13 20 -68.8798777278
+0.232995181052 0.0868511373751 0.13 20 -71.6854276344
+0.232995181052 0.0976778110089 0.13 20 -75.0476764074
+0.232995181052 0.109854114199 0.13 20 -79.1009661454
+0.232995181052 0.123548288826 0.13 20 -84.0181380992
+0.232995181052 0.138949549437 0.13 20 -90.0232077704
+0.232995181052 0.156270697655 0.13 20 -97.4087443345
+0.232995181052 0.175751062485 0.13 20 -106.559925367
+0.232995181052 0.19765980717 0.13 20 -117.988190758
+0.232995181052 0.222299648253 0.13 20 -132.378924207
+0.232995181052 0.250011038262 0.13 20 -150.660041342
+0.232995181052 0.281176869797 0.13 20 -174.102504769
+0.232995181052 0.316227766017 0.13 20 -204.471092032
+0.267011896997 0.001 0.13 20 -52.108425352
+0.267011896997 0.00112465782212 0.13 20 -52.1288434511
+0.267011896997 0.00126485521686 0.13 20 -52.1518316263
+0.267011896997 0.00142252931349 0.13 20 -52.1777168453
+0.267011896997 0.00159985871961 0.13 20 -52.2068685882
+0.267011896997 0.00179929362329 0.13 20 -52.2397046142
+0.267011896997 0.00202358964773 0.13 20 -52.2766975731
+0.267011896997 0.00227584592607 0.13 20 -52.3183826005
+0.267011896997 0.0025595479227 0.13 20 -52.3653660611
+0.267011896997 0.00287861559235 0.13 20 -52.4183356396
+0.267011896997 0.00323745754282 0.13 20 -52.4780720164
+0.267011896997 0.00364103194931 0.13 20 -52.5454624138
+0.267011896997 0.00409491506238 0.13 20 -52.621516362
+0.267011896997 0.00460537825582 0.13 20 -52.7073841046
+0.267011896997 0.00517947467923 0.13 20 -52.8043781604
+0.267011896997 0.00582513671247 0.13 20 -52.9139986725
+0.267011896997 0.0065512855686 0.13 20 -53.037963325
+0.267011896997 0.00736795455966 0.13 20 -53.1782427872
+0.267011896997 0.00828642772855 0.13 20 -53.3371028853
+0.267011896997 0.00931939576234 0.13 20 -53.5171549915
+0.267011896997 0.0104811313415 0.13 20 -53.7214165031
+0.267011896997 0.0117876863479 0.13 20 -53.953383765
+0.267011896997 0.0132571136559 0.13 20 -54.2171204135
+0.267011896997 0.0149097165718 0.13 20 -54.5173649185
+0.267011896997 0.0167683293681 0.13 20 -54.8596621461
+0.267011896997 0.0188586327877 0.13 20 -55.2505251145
+0.267011896997 0.0212095088792 0.13 20 -55.6976348893
+0.267011896997 0.0238534400643 0.13 20 -56.2100888914
+0.267011896997 0.0268269579528 0.13 20 -56.7987109637
+0.267011896997 0.0301711481053 0.13 20 -57.4764406148
+0.267011896997 0.033932217719 0.13 20 -58.2588242914
+0.267011896997 0.0381621340795 0.13 20 -59.1646388062
+0.267011896997 0.0429193426013 0.13 20 -60.2166868504
+0.267011896997 0.0482695743768 0.13 20 -61.4428177892
+0.267011896997 0.0542867543932 0.13 20 -62.8772450201
+0.267011896997 0.0610540229659 0.13 20 -64.5622559376
+0.267011896997 0.0686648845004 0.13 20 -66.5504446986
+0.267011896997 0.0772244994584 0.13 20 -68.9076453838
+0.267011896997 0.0868511373751 0.13 20 -71.716809434
+0.267011896997 0.0976778110089 0.13 20 -75.0831646854
+0.267011896997 0.109854114199 0.13 20 -79.1411262934
+0.267011896997 0.123548288826 0.13 20 -84.0636210476
+0.267011896997 0.138949549437 0.13 20 -90.0747650534
+0.267011896997 0.156270697655 0.13 20 -97.4672463986
+0.267011896997 0.175751062485 0.13 20 -106.626383989
+0.267011896997 0.19765980717 0.13 20 -118.063786723
+0.267011896997 0.222299648253 0.13 20 -132.465041803
+0.267011896997 0.250011038262 0.13 20 -150.758311784
+0.267011896997 0.281176869797 0.13 20 -174.214861526
+0.267011896997 0.316227766017 0.13 20 -204.599842251
+0.305994968721 0.001 0.13 20 -52.1087973663
+0.305994968721 0.00112465782212 0.13 20 -52.129261868
+0.305994968721 0.00126485521686 0.13 20 -52.1523022376
+0.305994968721 0.00142252931349 0.13 20 -52.178246167
+0.305994968721 0.00159985871961 0.13 20 -52.2074639509
+0.305994968721 0.00179929362329 0.13 20 -52.2403742654
+0.305994968721 0.00202358964773 0.13 20 -52.2774507926
+0.305994968721 0.00227584592607 0.13 20 -52.3192298298
+0.305994968721 0.0025595479227 0.13 20 -52.3663190499
+0.305994968721 0.00287861559235 0.13 20 -52.4194076102
+0.305994968721 0.00323745754282 0.13 20 -52.4792778496
+0.305994968721 0.00364103194931 0.13 20 -52.5468188586
+0.305994968721 0.00409491506238 0.13 20 -52.6230422714
+0.305994968721 0.00460537825582 0.13 20 -52.7091007028
+0.305994968721 0.00517947467923 0.13 20 -52.8063093433
+0.305994968721 0.00582513671247 0.13 20 -52.9161713485
+0.305994968721 0.0065512855686 0.13 20 -53.0404077986
+0.305994968721 0.00736795455966 0.13 20 -53.180993194
+0.305994968721 0.00828642772855 0.13 20 -53.3401976839
+0.305994968721 0.00931939576234 0.13 20 -53.5206375199
+0.305994968721 0.0104811313415 0.13 20 -53.7253356101
+0.305994968721 0.0117876863479 0.13 20 -53.9577945261
+0.305994968721 0.0132571136559 0.13 20 -54.2220849435
+0.305994968721 0.0149097165718 0.13 20 -54.5229532956
+0.305994968721 0.0167683293681 0.13 20 -54.8659534639
+0.305994968721 0.0188586327877 0.13 20 -55.2576086802
+0.305994968721 0.0212095088792 0.13 20 -55.7056115924
+0.305994968721 0.0238534400643 0.13 20 -56.2190727684
+0.305994968721 0.0268269579528 0.13 20 -56.8088309906
+0.305994968721 0.0301711481053 0.13 20 -57.4878427651
+0.305994968721 0.033932217719 0.13 20 -58.2716739039
+0.305994968721 0.0381621340795 0.13 20 -59.1791233169
+0.305994968721 0.0429193426013 0.13 20 -60.2330189518
+0.305994968721 0.0482695743768 0.13 20 -61.4612390966
+0.305994968721 0.0542867543932 0.13 20 -62.8980303388
+0.305994968721 0.0610540229659 0.13 20 -64.5857182481
+0.305994968721 0.0686648845004 0.13 20 -66.5769410042
+0.305994968721 0.0772244994584 0.13 20 -68.9375835973
+0.305994968721 0.0868511373751 0.13 20 -71.7506565276
+0.305994968721 0.0976778110089 0.13 20 -75.1214563837
+0.305994968721 0.109854114199 0.13 20 -79.1844786645
+0.305994968721 0.123548288826 0.13 20 -84.1127444483
+0.305994968721 0.138949549437 0.13 20 -90.1304810152
+0.305994968721 0.156270697655 0.13 20 -97.5305082201
+0.305994968721 0.175751062485 0.13 20 -106.698302047
+0.305994968721 0.19765980717 0.13 20 -118.145659851
+0.305994968721 0.222299648253 0.13 20 -132.558396563
+0.305994968721 0.250011038262 0.13 20 -150.864952144
+0.305994968721 0.281176869797 0.13 20 -174.336932454
+0.305994968721 0.316227766017 0.13 20 -204.739912249
+0.350669471793 0.001 0.13 20 -52.1091939568
+0.350669471793 0.00112465782212 0.13 20 -52.1297079289
+0.350669471793 0.00126485521686 0.13 20 -52.1528039443
+0.350669471793 0.00142252931349 0.13 20 -52.178810467
+0.350669471793 0.00159985871961 0.13 20 -52.2080986605
+0.350669471793 0.00179929362329 0.13 20 -52.2410881791
+0.350669471793 0.00202358964773 0.13 20 -52.2782538057
+0.350669471793 0.00227584592607 0.13 20 -52.320133077
+0.350669471793 0.0025595479227 0.13 20 -52.3673350611
+0.350669471793 0.00287861559235 0.13 20 -52.4205504867
+0.350669471793 0.00323745754282 0.13 20 -52.4805634622
+0.350669471793 0.00364103194931 0.13 20 -52.5482650713
+0.350669471793 0.00409491506238 0.13 20 -52.6246691943
+0.350669471793 0.00460537825582 0.13 20 -52.7109309763
+0.350669471793 0.00517947467923 0.13 20 -52.8083684605
+0.350669471793 0.00582513671247 0.13 20 -52.9184880185
+0.350669471793 0.0065512855686 0.13 20 -53.0430143578
+0.350669471793 0.00736795455966 0.13 20 -53.183926071
+0.350669471793 0.00828642772855 0.13 20 -53.3434979256
+0.350669471793 0.00931939576234 0.13 20 -53.5243513887
+0.350669471793 0.0104811313415 0.13 20 -53.7295152595
+0.350669471793 0.0117876863479 0.13 20 -53.9624987686
+0.350669471793 0.0132571136559 0.13 20 -54.2273801226
+0.350669471793 0.0149097165718 0.13 20 -54.5289142786
+0.350669471793 0.0167683293681 0.13 20 -54.8726647715
+0.350669471793 0.0188586327877 0.13 20 -55.2651657766
+0.350669471793 0.0212095088792 0.13 20 -55.7141223587
+0.350669471793 0.0238534400643 0.13 20 -56.2286591897
+0.350669471793 0.0268269579528 0.13 20 -56.819631091
+0.350669471793 0.0301711481053 0.13 20 -57.5000128322
+0.350669471793 0.033932217719 0.13 20 -58.285391053
+0.350669471793 0.0381621340795 0.13 20 -59.1945884528
+0.350669471793 0.0429193426013 0.13 20 -60.250460202
+0.350669471793 0.0482695743768 0.13 20 -61.4809158017
+0.350669471793 0.0542867543932 0.13 20 -62.9202377085
+0.350669471793 0.0610540229659 0.13 20 -64.6107928129
+0.350669471793 0.0686648845004 0.13 20 -66.6052670258
+0.350669471793 0.0772244994584 0.13 20 -68.9696006404
+0.350669471793 0.0868511373751 0.13 20 -71.7868684468
+0.350669471793 0.0976778110089 0.13 20 -75.162442047
+0.350669471793 0.109854114199 0.13 20 -79.2309048223
+0.350669471793 0.123548288826 0.13 20 -84.1653812755
+0.350669471793 0.138949549437 0.13 20 -90.1902210093
+0.350669471793 0.156270697655 0.13 20 -97.598389354
+0.350669471793 0.175751062485 0.13 20 -106.775536368
+0.350669471793 0.19765980717 0.13 20 -118.233669131
+0.350669471793 0.222299648253 0.13 20 -132.658857187
+0.350669471793 0.250011038262 0.13 20 -150.979852274
+0.350669471793 0.281176869797 0.13 20 -174.468645753
+0.350669471793 0.316227766017 0.13 20 -204.891294339
+0.401866341011 0.001 0.13 20 -52.1096127371
+0.401866341011 0.00112465782212 0.13 20 -52.13017895
+0.401866341011 0.00126485521686 0.13 20 -52.1533337282
+0.401866341011 0.00142252931349 0.13 20 -52.1794063512
+0.401866341011 0.00159985871961 0.13 20 -52.2087689005
+0.401866341011 0.00179929362329 0.13 20 -52.2418420635
+0.401866341011 0.00202358964773 0.13 20 -52.2791017863
+0.401866341011 0.00227584592607 0.13 20 -52.321086915
+0.401866341011 0.0025595479227 0.13 20 -52.3684079922
+0.401866341011 0.00287861559235 0.13 20 -52.4217574073
+0.401866341011 0.00323745754282 0.13 20 -52.4819211387
+0.401866341011 0.00364103194931 0.13 20 -52.5497923772
+0.401866341011 0.00409491506238 0.13 20 -52.6263873771
+0.401866341011 0.00460537825582 0.13 20 -52.7128639594
+0.401866341011 0.00517947467923 0.13 20 -52.8105431838
+0.401866341011 0.00582513671247 0.13 20 -52.9209348234
+0.401866341011 0.0065512855686 0.13 20 -53.045767423
+0.401866341011 0.00736795455966 0.13 20 -53.1870239054
+0.401866341011 0.00828642772855 0.13 20 -53.3469839267
+0.401866341011 0.00931939576234 0.13 20 -53.5282744752
+0.401866341011 0.0104811313415 0.13 20 -53.7339305898
+0.401866341011 0.0117876863479 0.13 20 -53.9674685559
+0.401866341011 0.0132571136559 0.13 20 -54.2329745628
+0.401866341011 0.0149097165718 0.13 20 -54.5352126056
+0.401866341011 0.0167683293681 0.13 20 -54.8797564617
+0.401866341011 0.0188586327877 0.13 20 -55.2731519232
+0.401866341011 0.0212095088792 0.13 20 -55.7231172448
+0.401866341011 0.0238534400643 0.13 20 -56.2387920909
+0.401866341011 0.0268269579528 0.13 20 -56.8310483461
+0.401866341011 0.0301711481053 0.13 20 -57.5128802272
+0.401866341011 0.033932217719 0.13 20 -58.2998965726
+0.401866341011 0.0381621340795 0.13 20 -59.2109454662
+0.401866341011 0.0429193426013 0.13 20 -60.2689111609
+0.401866341011 0.0482695743768 0.13 20 -61.5017365492
+0.401866341011 0.0542867543932 0.13 20 -62.9437425171
+0.401866341011 0.0610540229659 0.13 20 -64.6373402997
+0.401866341011 0.0686648845004 0.13 20 -66.6352671263
+0.401866341011 0.0772244994584 0.13 20 -69.0035228708
+0.401866341011 0.0868511373751 0.13 20 -71.8252517425
+0.401866341011 0.0976778110089 0.13 20 -75.205906544
+0.401866341011 0.109854114199 0.13 20 -79.2801660516
+0.401866341011 0.123548288826 0.13 20 -84.2212673765
+0.401866341011 0.138949549437 0.13 20 -90.2536937593
+0.401866341011 0.156270697655 0.13 20 -97.670570062
+0.401866341011 0.175751062485 0.13 20 -106.857738039
+0.401866341011 0.19765980717 0.13 20 -118.327436809
+0.401866341011 0.222299648253 0.13 20 -132.7660191
+0.401866341011 0.250011038262 0.13 20 -151.102585467
+0.401866341011 0.281176869797 0.13 20 -174.609561467
+0.401866341011 0.316227766017 0.13 20 -205.053550795
+0.460537825582 0.001 0.13 20 -52.1100502562
+0.460537825582 0.00112465782212 0.13 20 -52.1306710503
+0.460537825582 0.00126485521686 0.13 20 -52.1538872246
+0.460537825582 0.00142252931349 0.13 20 -52.1800289109
+0.460537825582 0.00159985871961 0.13 20 -52.2094691501
+0.460537825582 0.00179929362329 0.13 20 -52.2426297098
+0.460537825582 0.00202358964773 0.13 20 -52.2799877518
+0.460537825582 0.00227584592607 0.13 20 -52.3220834912
+0.460537825582 0.0025595479227 0.13 20 -52.3695290122
+0.460537825582 0.00287861559235 0.13 20 -52.4230184403
+0.460537825582 0.00323745754282 0.13 20 -52.4833397099
+0.460537825582 0.00364103194931 0.13 20 -52.5513882153
+0.460537825582 0.00409491506238 0.13 20 -52.628182694
+0.460537825582 0.00460537825582 0.13 20 -52.7148837665
+0.460537825582 0.00517947467923 0.13 20 -52.8128156485
+0.460537825582 0.00582513671247 0.13 20 -52.9234916732
+0.460537825582 0.0065512855686 0.13 20 -53.048644402
+0.460537825582 0.00736795455966 0.13 20 -53.1902612916
+0.460537825582 0.00828642772855 0.13 20 -53.3506271179
+0.460537825582 0.00931939576234 0.13 20 -53.5323746534
+0.460537825582 0.0104811313415 0.13 20 -53.7385454759
+0.460537825582 0.0117876863479 0.13 20 -53.9726632674
+0.460537825582 0.0132571136559 0.13 20 -54.2388225891
+0.460537825582 0.0149097165718 0.13 20 -54.5417969206
+0.460537825582 0.0167683293681 0.13 20 -54.8871707923
+0.460537825582 0.0188586327877 0.13 20 -55.2815022005
+0.460537825582 0.0212095088792 0.13 20 -55.7325232653
+0.460537825582 0.0238534400643 0.13 20 -56.2493894233
+0.460537825582 0.0268269579528 0.13 20 -56.8429905248
+0.460537825582 0.0301711481053 0.13 20 -57.5263412812
+0.460537825582 0.033932217719 0.13 20 -58.3150739494
+0.460537825582 0.0381621340795 0.13 20 -59.2280634229
+0.460537825582 0.0429193426013 0.13 20 -60.2882247091
+0.460537825582 0.0482695743768 0.13 20 -61.5235360618
+0.460537825582 0.0542867543932 0.13 20 -62.968359127
+0.460537825582 0.0610540229659 0.13 20 -64.6651522549
+0.460537825582 0.0686648845004 0.13 20 -66.6667073047
+0.460537825582 0.0772244994584 0.13 20 -69.0390877106
+0.460537825582 0.0868511373751 0.13 20 -71.8655119121
+0.460537825582 0.0976778110089 0.13 20 -75.2515197663
+0.460537825582 0.109854114199 0.13 20 -79.3318926167
+0.460537825582 0.123548288826 0.13 20 -84.2799890377
+0.460537825582 0.138949549437 0.13 20 -90.3204369276
+0.460537825582 0.156270697655 0.13 20 -97.7465345181
+0.460537825582 0.175751062485 0.13 20 -106.944332807
+0.460537825582 0.19765980717 0.13 20 -118.426325437
+0.460537825582 0.222299648253 0.13 20 -132.879177494
+0.460537825582 0.250011038262 0.13 20 -151.232376688
+0.460537825582 0.281176869797 0.13 20 -174.758833923
+0.460537825582 0.316227766017 0.13 20 -205.225769295
+0.527775200726 0.001 0.13 20 -52.1105019614
+0.527775200726 0.00112465782212 0.13 20 -52.1311791095
+0.527775200726 0.00126485521686 0.13 20 -52.1544586746
+0.527775200726 0.00142252931349 0.13 20 -52.1806716692
+0.527775200726 0.00159985871961 0.13 20 -52.210192125
+0.527775200726 0.00179929362329 0.13 20 -52.2434429253
+0.527775200726 0.00202358964773 0.13 20 -52.2809024878
+0.527775200726 0.00227584592607 0.13 20 -52.3231124419
+0.527775200726 0.0025595479227 0.13 20 -52.3706864647
+0.527775200726 0.00287861559235 0.13 20 -52.4243204757
+0.527775200726 0.00323745754282 0.13 20 -52.4848044304
+0.527775200726 0.00364103194931 0.13 20 -52.5530360006
+0.527775200726 0.00409491506238 0.13 20 -52.6300364911
+0.527775200726 0.00460537825582 0.13 20 -52.7169694159
+0.527775200726 0.00517947467923 0.13 20 -52.8151622549
+0.527775200726 0.00582513671247 0.13 20 -52.9261320231
+0.527775200726 0.0065512855686 0.13 20 -53.0516154369
+0.527775200726 0.00736795455966 0.13 20 -53.1936046444
+0.527775200726 0.00828642772855 0.13 20 -53.3543897205
+0.527775200726 0.00931939576234 0.13 20 -53.5366094269
+0.527775200726 0.0104811313415 0.13 20 -53.7433121135
+0.527775200726 0.0117876863479 0.13 20 -53.9780291259
+0.527775200726 0.0132571136559 0.13 20 -54.2448637042
+0.527775200726 0.0149097165718 0.13 20 -54.5485991635
+0.527775200726 0.0167683293681 0.13 20 -54.8948311929
+0.527775200726 0.0188586327877 0.13 20 -55.29013046
+0.527775200726 0.0212095088792 0.13 20 -55.7422434912
+0.527775200726 0.0238534400643 0.13 20 -56.2603421236
+0.527775200726 0.0268269579528 0.13 20 -56.8553349039
+0.527775200726 0.0301711481053 0.13 20 -57.5402578923
+0.527775200726 0.033932217719 0.13 20 -58.3307677663
+0.527775200726 0.0381621340795 0.13 20 -59.2457674085
+0.527775200726 0.0429193426013 0.13 20 -60.3082039763
+0.527775200726 0.0482695743768 0.13 20 -61.5460927415
+0.527775200726 0.0542867543932 0.13 20 -62.993838089
+0.527775200726 0.0610540229659 0.13 20 -64.6939478587
+0.527775200726 0.0686648845004 0.13 20 -66.6992714054
+0.527775200726 0.0772244994584 0.13 20 -69.0759392027
+0.527775200726 0.0868511373751 0.13 20 -71.9072481718
+0.527775200726 0.0976778110089 0.13 20 -75.2988304543
+0.527775200726 0.109854114199 0.13 20 -79.3855764422
+0.527775200726 0.123548288826 0.13 20 -84.3409742693
+0.527775200726 0.138949549437 0.13 20 -90.3898066915
+0.527775200726 0.156270697655 0.13 20 -97.8255582809
+0.527775200726 0.175751062485 0.13 20 -107.034505941
+0.527775200726 0.19765980717 0.13 20 -118.529419494
+0.527775200726 0.222299648253 0.13 20 -132.997304861
+0.527775200726 0.250011038262 0.13 20 -151.36807492
+0.527775200726 0.281176869797 0.13 20 -174.915177444
+0.527775200726 0.316227766017 0.13 20 -205.406520063
+0.604829065124 0.001 0.13 20 -52.1109622298
+0.604829065124 0.00112465782212 0.13 20 -52.1316968031
+0.604829065124 0.00126485521686 0.13 20 -52.1550409652
+0.604829065124 0.00142252931349 0.13 20 -52.1813266256
+0.604829065124 0.00159985871961 0.13 20 -52.2109288267
+0.604829065124 0.00179929362329 0.13 20 -52.2442715888
+0.604829065124 0.00202358964773 0.13 20 -52.2818346103
+0.604829065124 0.00227584592607 0.13 20 -52.3241609628
+0.604829065124 0.0025595479227 0.13 20 -52.3718659474
+0.604829065124 0.00287861559235 0.13 20 -52.4256473134
+0.604829065124 0.00323745754282 0.13 20 -52.4862970779
+0.604829065124 0.00364103194931 0.13 20 -52.5547152359
+0.604829065124 0.00409491506238 0.13 20 -52.6319257111
+0.604829065124 0.00460537825582 0.13 20 -52.7190949707
+0.604829065124 0.00517947467923 0.13 20 -52.8175538255
+0.604829065124 0.00582513671247 0.13 20 -52.9288230488
+0.604829065124 0.0065512855686 0.13 20 -53.0546435999
+0.604829065124 0.00736795455966 0.13 20 -53.1970124178
+0.604829065124 0.00828642772855 0.13 20 -53.3582249912
+0.604829065124 0.00931939576234 0.13 20 -53.5409262015
+0.604829065124 0.0104811313415 0.13 20 -53.7481713222
+0.604829065124 0.0117876863479 0.13 20 -53.9834995364
+0.604829065124 0.0132571136559 0.13 20 -54.2510229634
+0.604829065124 0.0149097165718 0.13 20 -54.5555349873
+0.604829065124 0.0167683293681 0.13 20 -54.9026427256
+0.604829065124 0.0188586327877 0.13 20 -55.2989298327
+0.604829065124 0.0212095088792 0.13 20 -55.7521576101
+0.604829065124 0.0238534400643 0.13 20 -56.2715147275
+0.604829065124 0.0268269579528 0.13 20 -56.8679289384
+0.604829065124 0.0301711481053 0.13 20 -57.5544582549
+0.604829065124 0.033932217719 0.13 20 -58.3467844919
+0.604829065124 0.0381621340795 0.13 20 -59.2638393769
+0.604829065124 0.0429193426013 0.13 20 -60.3286032433
+0.604829065124 0.0482695743768 0.13 20 -61.569129619
+0.604829065124 0.0542867543932 0.13 20 -63.0198671272
+0.604829065124 0.0610540229659 0.13 20 -64.7233749257
+0.604829065124 0.0686648845004 0.13 20 -66.7325621061
+0.604829065124 0.0772244994584 0.13 20 -69.1136289466
+0.604829065124 0.0868511373751 0.13 20 -71.949954283
+0.604829065124 0.0976778110089 0.13 20 -75.3472668347
+0.604829065124 0.109854114199 0.13 20 -79.4405714507
+0.604829065124 0.123548288826 0.13 20 -84.4034926922
+0.604829065124 0.138949549437 0.13 20 -90.4609769705
+0.604829065124 0.156270697655 0.13 20 -97.9067065741
+0.604829065124 0.175751062485 0.13 20 -107.127199177
+0.604829065124 0.19765980717 0.13 20 -118.635520425
+0.604829065124 0.222299648253 0.13 20 -133.119043382
+0.604829065124 0.250011038262 0.13 20 -151.508141822
+0.604829065124 0.281176869797 0.13 20 -175.076849739
+0.604829065124 0.316227766017 0.13 15 -205.021050626
+0.693132601751 0.001 0.13 20 -52.1114244912
+0.693132601751 0.00112465782212 0.13 20 -52.1322167418
+0.693132601751 0.00126485521686 0.13 20 -52.1556257848
+0.693132601751 0.00142252931349 0.13 20 -52.1819844318
+0.693132601751 0.00159985871961 0.13 20 -52.2116687402
+0.693132601751 0.00179929362329 0.13 20 -52.245103873
+0.693132601751 0.00202358964773 0.13 20 -52.2827708158
+0.693132601751 0.00227584592607 0.13 20 -52.3252140894
+0.693132601751 0.0025595479227 0.13 20 -52.3730506275
+0.693132601751 0.00287861559235 0.13 20 -52.4269800186
+0.693132601751 0.00323745754282 0.13 20 -52.4877963522
+0.693132601751 0.00364103194931 0.13 20 -52.5564019594
+0.693132601751 0.00409491506238 0.13 20 -52.6338233976
+0.693132601751 0.00460537825582 0.13 20 -52.7212301042
+0.693132601751 0.00517947467923 0.13 20 -52.8199562406
+0.693132601751 0.00582513671247 0.13 20 -52.931526362
+0.693132601751 0.0065512855686 0.13 20 -53.0576856973
+0.693132601751 0.00736795455966 0.13 20 -53.2004360087
+0.693132601751 0.00828642772855 0.13 20 -53.3620782359
+0.693132601751 0.00931939576234 0.13 20 -53.5452634251
+0.693132601751 0.0104811313415 0.13 20 -53.7530538261
+0.693132601751 0.0117876863479 0.13 20 -53.9889965224
+0.693132601751 0.0132571136559 0.13 20 -54.2572125884
+0.693132601751 0.0149097165718 0.13 20 -54.5625055678
+0.693132601751 0.0167683293681 0.13 20 -54.9104941164
+0.693132601751 0.0188586327877 0.13 20 -55.3077750079
+0.693132601751 0.0212095088792 0.13 20 -55.7621244805
+0.693132601751 0.0238534400643 0.13 20 -56.2827482342
+0.693132601751 0.0268269579528 0.13 20 -56.8805934708
+0.693132601751 0.0301711481053 0.13 20 -57.5687404527
+0.693132601751 0.033932217719 0.13 20 -58.3628965005
+0.693132601751 0.0381621340795 0.13 20 -59.2820226442
+0.693132601751 0.0429193426013 0.13 20 -60.3491329641
+0.693132601751 0.0482695743768 0.13 20 -61.5923199582
+0.693132601751 0.0542867543932 0.13 20 -63.0460773868
+0.693132601751 0.0610540229659 0.13 20 -64.7530168607
+0.693132601751 0.0686648845004 0.13 20 -66.7661086492
+0.693132601751 0.0772244994584 0.13 20 -69.1516246725
+0.693132601751 0.0868511373751 0.13 20 -71.9930280384
+0.693132601751 0.0976778110089 0.13 20 -75.3961470837
+0.693132601751 0.109854114199 0.13 20 -79.4961050591
+0.693132601751 0.123548288826 0.13 20 -84.4666681074
+0.693132601751 0.138949549437 0.13 20 -90.5329530814
+0.693132601751 0.156270697655 0.13 20 -97.9888489959
+0.693132601751 0.175751062485 0.13 20 -107.221126372
+0.693132601751 0.19765980717 0.13 20 -118.743163044
+0.693132601751 0.222299648253 0.13 20 -133.24272167
+0.693132601751 0.250011038262 0.13 20 -151.65066816
+0.693132601751 0.281176869797 0.13 15 -174.789013977
+0.693132601751 0.316227766017 0.13 15 -204.642142091
+0.794328234724 0.001 0.13 20 -52.1118814583
+0.794328234724 0.00112465782212 0.13 20 -52.1327307285
+0.794328234724 0.00126485521686 0.13 20 -52.1562039138
+0.794328234724 0.00142252931349 0.13 20 -52.1826347175
+0.794328234724 0.00159985871961 0.13 20 -52.2124002007
+0.794328234724 0.00179929362329 0.13 20 -52.2459266572
+0.794328234724 0.00202358964773 0.13 20 -52.2836963452
+0.794328234724 0.00227584592607 0.13 20 -52.3262552195
+0.794328234724 0.0025595479227 0.13 20 -52.3742218288
+0.794328234724 0.00287861559235 0.13 20 -52.4282975814
+0.794328234724 0.00323745754282 0.13 20 -52.4892786176
+0.794328234724 0.00364103194931 0.13 20 -52.5580695806
+0.794328234724 0.00409491506238 0.13 20 -52.6356996344
+0.794328234724 0.00460537825582 0.13 20 -52.7233411569
+0.794328234724 0.00517947467923 0.13 20 -52.8223316275
+0.794328234724 0.00582513671247 0.13 20 -52.9341993465
+0.794328234724 0.0065512855686 0.13 20 -53.0606937723
+0.794328234724 0.00736795455966 0.13 20 -53.2038214464
+0.794328234724 0.00828642772855 0.13 20 -53.3658887112
+0.794328234724 0.00931939576234 0.13 20 -53.5495527252
+0.794328234724 0.0104811313415 0.13 20 -53.7578826572
+0.794328234724 0.0117876863479 0.13 20 -53.9944334301
+0.794328234724 0.0132571136559 0.13 20 -54.2633350077
+0.794328234724 0.0149097165718 0.13 20 -54.569401024
+0.794328234724 0.0167683293681 0.13 20 -54.9182616011
+0.794328234724 0.0188586327877 0.13 20 -55.3165265582
+0.794328234724 0.0212095088792 0.13 20 -55.7719869965
+0.794328234724 0.0238534400643 0.13 20 -56.2938655754
+0.794328234724 0.0268269579528 0.13 20 -56.8931288813
+0.794328234724 0.0301711481053 0.13 20 -57.5828793744
+0.794328234724 0.033932217719 0.13 20 -58.3788498488
+0.794328234724 0.0381621340795 0.13 20 -59.3000306339
+0.794328234724 0.0429193426013 0.13 20 -60.3694695972
+0.794328234724 0.0482695743768 0.13 20 -61.6152983097
+0.794328234724 0.0542867543932 0.13 20 -63.0720558594
+0.794328234724 0.0610540229659 0.13 20 -64.7824066237
+0.794328234724 0.0686648845004 0.13 20 -66.799382534
+0.794328234724 0.0772244994584 0.13 20 -69.1893278726
+0.794328234724 0.0868511373751 0.13 20 -72.0357910643
+0.794328234724 0.0976778110089 0.13 20 -75.4447015581
+0.794328234724 0.109854114199 0.13 20 -79.5513031227
+0.794328234724 0.123548288826 0.13 20 -84.5295064629
+0.794328234724 0.138949549437 0.13 20 -90.6046030607
+0.794328234724 0.156270697655 0.13 20 -98.0706945468
+0.794328234724 0.175751062485 0.13 20 -107.314812599
+0.794328234724 0.19765980717 0.13 20 -118.850659032
+0.794328234724 0.222299648253 0.13 20 -133.366402969
+0.794328234724 0.250011038262 0.13 15 -151.489327103
+0.794328234724 0.281176869797 0.13 15 -174.415599288
+0.794328234724 0.316227766017 0.13 15 -204.283938855
diff --git a/experiments/process.py b/experiments/process.py
index b5e0d6d..ff722c8 100644
--- a/experiments/process.py
+++ b/experiments/process.py
@@ -11,9 +11,10 @@ if __name__ == "__main__":
sys.exit("usage: {0} <file>".format(sys.argv[0]))
root_victims, victims, non_victims, age = load(open(sys.argv[1]))
- # alphas = 1. / np.arange(1000., 10000., 50.) # parameter of the time component
- alphas = np.logspace(-2,2,num=5)
- deltas = np.logspace(-10,-1,num=10)#np.arange(0.000001, 0.005, 0.001) # parameter of the structural component
+ # alphas = 1. / np.arange(1., 2000., 30.) # parameter of the time component
+ alphas = np.logspace(-3,-.1,num=50)
+ # deltas = np.arange(0.005, 0.5, 0.005) # parameter of the structural component
+ deltas = np.logspace(-3,-.5,num=50)
with open("out.log", "w") as fh:
for alpha, delta in product(alphas, deltas):
beta, roots, ll = ml(root_victims, victims, non_victims, age, alpha, delta)
@@ -21,7 +22,7 @@ if __name__ == "__main__":
fh.write("\t".join(map(str, [alpha, delta, beta, roots, ll])) + "\n")
fh.flush()
- # alpha = 20000.
+ # alpha = 1/10.
# delta = .5
# beta, roots, ll = ml(root_victims, victims, non_victims, age, alpha, delta)
# print "\t".join(map(str, [1./alpha, delta, beta, roots, ll])) \ No newline at end of file