diff options
Diffstat (limited to 'R Scripts/analyze-cascades.R')
| -rwxr-xr-x | R Scripts/analyze-cascades.R | 41 |
1 files changed, 9 insertions, 32 deletions
diff --git a/R Scripts/analyze-cascades.R b/R Scripts/analyze-cascades.R index b1ce3c3..60c59fb 100755 --- a/R Scripts/analyze-cascades.R +++ b/R Scripts/analyze-cascades.R @@ -1,5 +1,6 @@ library(igraph) setwd("~/Documents/Violence Cascades/") +start_date = as.Date("2005-12-31") # plot cascade sizes data = read.csv('Results/components_dist-91515.csv',header=F) @@ -13,52 +14,28 @@ plot(sizes,counts,log='xy',type='o',lwd=3, # plot cascades edges = read.csv('Results/edges-91515.csv',header=F, col.names=c('v1','t1','v2','t2','dist')) -for(id in unique(union(edges$v1,edges$v2))){ - e = edges[union(match(id,edges$v1), match(id,edges$v2)),] - times = sort(union(e$t1[e$v1==id],e$t2[e$v2==id])) - if (length(times)>1){ - for(time in times[-1]){ - idx = which(time==times) - edges$v1[as.numeric(rownames(e))[e$t1==time]] = e$v1[e$t1==time] + (idx-1)/length(times) - edges$v2[as.numeric(rownames(e))[e$t2==time]] = e$v2[e$t2==time] + (idx-1)/length(times) - } - } -} +edges$v1 = edges$v1*10000 + edges$t1 +edges$v2 = edges$v2*10000 + edges$t2 dag = graph.data.frame(edges[,c(1,3)], directed=TRUE) -table(clusters(dag)$csize) - - - +table(components(dag,mode='weak')$csize) clusters = clusters(dag) membership = clusters$membership csize = clusters$csize order = rev(order(csize)) - -i = 4 +i = 95 V = which(clusters(dag)$membership==order[i]) # get all nodes in cluster cc = induced.subgraph(dag,V) -Vi = vic_ids[V] -Ei = intersect(which(dag_dat_vics$from[realized] %in% Vi),which(dag_dat_vics$to[realized] %in% Vi)) -cc_dat = (dag_dat_vics[realized,])[Ei,] +times = as.numeric(V(cc)$name) %% 10000 +start_date + range(times) ### plot cascade ### cols = rep('lightblue',vcount(cc)) seed = which(degree(cc,mode='in')==0) cols[seed] = 'red' -plot(cc,vertex.size=10,edge.arrow.size=0.5,vertex.color=cols,vertex.label.cex=1, - edge.width=E(cc)$weight*20/max(E(cc)$weight),layout=layout.reingold.tilford(cc,root=seed), - vertex.label=V(hyp_lcc)$vic.day[Vi]) -plot(cc,vertex.size=10,edge.arrow.size=0.5,vertex.color=cols,vertex.label.cex=1, +plot(cc,vertex.size=5,edge.arrow.size=0.2,vertex.color=cols,vertex.label=NA, layout=layout.reingold.tilford(cc,root=seed)) - -### basic graph statistics -trl = mean(transitivity(cc,type='local',isolates='zero')) -apl = average.path.length(cc) -indeg = degree(cc,mode='in') -outdeg = degree(cc,mode='out') -ds = mean(cc_dat$dist) - +par(mfrow = c(2,3)) |
