diff options
Diffstat (limited to 'R Scripts/predict-victims.R')
| -rw-r--r-- | R Scripts/predict-victims.R | 67 |
1 files changed, 67 insertions, 0 deletions
diff --git a/R Scripts/predict-victims.R b/R Scripts/predict-victims.R new file mode 100644 index 0000000..470815d --- /dev/null +++ b/R Scripts/predict-victims.R @@ -0,0 +1,67 @@ +library(igraph) +setwd('~/Documents/Cascade Project') +load('Raw Data/lcc.RData') +load('Results/hyper-lcc.RData') +load('Results/dag_dat_all.RData') +source('criminal_cascades/R Scripts/temporal.R') +source('criminal_cascades/R Scripts/structural.R') + +##### Initialize data +formula = vic ~ sex + race + age + gang.member + gang.name +lcc_verts$sex = as.factor(lcc_verts$sex) +lcc_verts$race = as.factor(lcc_verts$race) +lcc_verts$age = as.numeric(lcc_verts$age) +lcc_verts$gang.name = as.factor(lcc_verts$gang.name) +# sum(hyp_lcc_verts$vic)/length(days) + +alpha = 0.0028 +delta = 0.06 +days = sort(unique(hyp_lcc_verts$vic.day)) # 70:max(hyp_lcc_verts$vic.day, na.rm=T) +lambdas = c(0,1)#c(0, exp(seq(log(0.0000001), log(.0005), length.out=150)), 1) +nvics = sum(lcc_verts$vic)#sum(hyp_lcc_verts$vic.day %in% days) +correct_rank = matrix(nrow=nvics, ncol=length(lambdas)) +edges_all = dag_dat_all + +##### Loop through days +ptm = proc.time() +for (day in days){ + if (which(day==days) %% 100 == 0) print(day) + + ##### Demographics model + vics = match(unique(hyp_lcc_verts$ir_no[which(hyp_lcc_verts$vic.day<day)]),lcc_verts$name) + victims = lcc_verts[,c('vic','sex','race','age','gang.member','gang.name')] + victims$vic[vics] = TRUE + victims$vic[-vics] = FALSE +# glm.fit = glm(formula, data=victims, family=binomial) + glm.fit = lm(formula, data=victims) + glm.probs = predict(glm.fit, newdata=lcc_verts, type='response') + + ##### Cascade Model + edges = edges_all[which(edges_all$t1<day),] + f = temporal(edges$t1, day, alpha) + h = structural(delta,edges$dist) + weights = f*h + ids = edges$to + irs = hyp_lcc_verts$ir_no[ids] + risk = data.frame(id=ids, ir=irs, weight=weights) + risk = risk[order(weights, decreasing=T),] + risk = risk[match(unique(risk$ir),risk$ir),] +# maybe need to change this to reflect new algorithm that accounts for \tilde{p} + + ##### Combined Model + combined = data.frame(ir=attr(glm.probs,'name'), dem=as.numeric(glm.probs), cas=0, comb=0) + combined$cas[match(risk$ir, attr(glm.probs,'name'))] = risk$weight + + ##### Gather results + infected_irs = hyp_lcc_verts$ir_no[which(hyp_lcc_verts$vic.day==day)] + for (lambda in lambdas){ + combined$comb = lambda*combined$dem + (1-lambda)*combined$cas + c_idx = which(lambdas==lambda) + r_idx = head(which(is.na(correct_rank[,c_idx])),length(infected_irs)) + # !! order should be first: rank of (3,5,5,7) should be (1,2,2,4), may need to do n-rank + correct_rank[r_idx,c_idx] = match(infected_irs, combined$ir[order(combined$comb, decreasing=T)]) + # maybe should also mark down vic/nonvic status of each? + } + +} +print(proc.time()-ptm) |
