summaryrefslogtreecommitdiffstats
path: root/experiments/ml.pyx
diff options
context:
space:
mode:
Diffstat (limited to 'experiments/ml.pyx')
-rw-r--r--experiments/ml.pyx20
1 files changed, 14 insertions, 6 deletions
diff --git a/experiments/ml.pyx b/experiments/ml.pyx
index 8dfea70..cc79609 100644
--- a/experiments/ml.pyx
+++ b/experiments/ml.pyx
@@ -13,11 +13,13 @@ cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
DTYPE_t w1, DTYPE_t w2, DTYPE_t w3):
"""weight for successful infection, exponential time model"""
cdef DTYPE_t structural, temporal, result
- structural = dist * log(delta)
+ structural = delta ** dist
# structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta)
- temporal = log(alpha) - alpha * dt
+ temporal = exp(-alpha*dt) * (exp(alpha)-1)
+ if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR'
# temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01
- result = structural + temporal
+ result = log(structural * temporal)
+ # print 'st', structural, temporal
return result
cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
@@ -26,9 +28,10 @@ cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
cdef DTYPE_t structural, temporal, result
structural = delta ** dist
# structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta)
- temporal = 1. - exp(-alpha * dt)
+ temporal = exp(-alpha * dt)
# temporal = 1. - 1. / (1. + dt/alpha)**0.01
- result = log(1. - structural * temporal)
+ result = log(1. - structural + structural * temporal)
+ # print 'stnv', structural, temporal
return result
def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
@@ -72,6 +75,7 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
ll = probs_fail.sum() # add probability that all edges to victims fail
ll += probs_nv.sum() # add probability that all edges to non_victims fail
+ print 'probs', probs
max_i = -1
max_beta_add = float('-inf')
# iterate over all victim nodes to find the optimal threshold
@@ -79,16 +83,20 @@ def ml(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
roots = n_roots + n_victims - i
beta = float(roots)/float(n_nodes)
thresh = log(beta/(1.-beta))
+ # print 'thresh:', thresh
# add probability for realized edges and subtract probability these edges fail
beta_add = (probs[probs>thresh]).sum()
- print len(probs[probs>thresh])
+ # print 'len(probs[probs>thresh]):', len(probs[probs>thresh])
# add probability for the seeds and non-seeds
beta_add += roots * log(beta) + (n_nodes-roots) * log(1 - beta)
if beta_add > max_beta_add:
max_i = i
max_beta_add = beta_add
+ print max_i, max_beta_add
+ else:
+ print i
ll += max_beta_add
roots = n_roots + n_victims - max_i