summaryrefslogtreecommitdiffstats
path: root/experiments/ml2.pyx
diff options
context:
space:
mode:
Diffstat (limited to 'experiments/ml2.pyx')
-rw-r--r--experiments/ml2.pyx86
1 files changed, 86 insertions, 0 deletions
diff --git a/experiments/ml2.pyx b/experiments/ml2.pyx
new file mode 100644
index 0000000..9edc7e6
--- /dev/null
+++ b/experiments/ml2.pyx
@@ -0,0 +1,86 @@
+# cython: boundscheck=False, cdivision=True
+import numpy as np
+cimport numpy as np
+from libc.math cimport log, exp
+
+DTYPE = np.float64
+ctypedef np.float_t DTYPE_t
+
+cdef DTYPE_t plogis(DTYPE_t weight, DTYPE_t delta):
+ return 1./(1. + exp(-weight/delta))
+
+cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
+ DTYPE_t w1, DTYPE_t w2, DTYPE_t w3):
+ """weight for successful infection, exponential time model"""
+ cdef DTYPE_t structural, temporal, result
+ structural = delta ** dist
+ # structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta)
+ temporal = exp(-alpha*dt) * (exp(alpha)-1.)
+ # temporal = 1 - exp(-alpha*dt)
+ if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR'
+ # temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01
+ result = log(structural * temporal)
+ # print 'st', structural, temporal
+ return result
+
+cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
+ DTYPE_t w1, DTYPE_t w2, DTYPE_t w3):
+ """weight for failed infection, exponential time model"""
+ cdef DTYPE_t structural, temporal, result
+ structural = delta ** dist
+ # structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta)
+ temporal = exp(-alpha * dt)
+ # temporal = 1. - 1. / (1. + dt/alpha)**0.01
+ result = log(1. - structural + structural * temporal)
+ # print 'stnv', structural, temporal
+ return result
+
+def ml2(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
+ DTYPE_t alpha, DTYPE_t delta):
+ cdef:
+ int n_roots, n_victims, roots, i, dist, dt, t, l
+ DTYPE_t beta, ll
+ list parents, failures, successes
+ n_roots, n_victims = len(root_victims), len(victims)
+ cdef:
+ np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE)
+ np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE)
+ np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE)
+
+ # loop through victims
+ for i, parents in enumerate(victims.itervalues()):
+ # for each victim node i, compute the probability that all its parents
+ # fail to infect it, also computes the probability that its most
+ # likely parent infects it
+ failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3)
+ for (dist, dt, w1, w2, w3) in parents]
+ probs_fail[i] = sum(failures)
+ successes = [weight_success(dist, dt, alpha, delta, w1, w2, w3)
+ for (dist, dt, w1, w2, w3) in parents]
+ # find parent that maximizes log(p) - log(\tilde{p})
+ probs[i] = max(s - failures[l] for l, s in enumerate(successes))
+
+ # loop through non-victims
+ for i, parents in enumerate(non_victims.itervalues()):
+ # for each non victim node, compute the probability that all its
+ # parents fail to infect it
+ failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3)
+ for (dist, dt, w1, w2, w3) in parents]
+ probs_nv[i] = sum(failures)
+
+ # print successes
+ # print failures
+ # print probs
+
+ # calculate log likelihood
+ # probs.sort(); probs = probs[::-1] # sort probs in descending order
+ # cdef:
+ # np.ndarray[DTYPE_t] cums = probs.cumsum()
+ ll = probs_fail.sum() # add probability that all edges to victims fail
+ ll += probs_nv.sum() # add probability that all edges to non_victims fail
+ ll += probs.sum() # add probability for realized edges and subtract probability these edges fail
+
+ roots = n_roots
+ beta = 0
+ # print n_nodes, n_roots, n_victims, max_i, roots
+ return (beta, roots, ll)