summaryrefslogtreecommitdiffstats
path: root/experiments/ml2.pyx
diff options
context:
space:
mode:
Diffstat (limited to 'experiments/ml2.pyx')
-rw-r--r--experiments/ml2.pyx95
1 files changed, 0 insertions, 95 deletions
diff --git a/experiments/ml2.pyx b/experiments/ml2.pyx
deleted file mode 100644
index 1458683..0000000
--- a/experiments/ml2.pyx
+++ /dev/null
@@ -1,95 +0,0 @@
-# cython: boundscheck=False, cdivision=True
-import numpy as np
-cimport numpy as np
-from libc.math cimport log, exp
-
-DTYPE = np.float64
-ctypedef np.float_t DTYPE_t
-
-cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYPE_t lmbda,
- DTYPE_t w1, DTYPE_t w2, DTYPE_t w3):
- """weight for successful infection, exponential time model"""
- cdef DTYPE_t structural, temporal, result
- structural = delta ** dist
- # structural = delta/(1. + 1./(w1*lmbda) + 1./(w2*lmbda) + 1./(w3*lmbda))
- temporal = log(exp(alpha)-1.) - alpha*dt
- # temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01
- result = log(structural) + temporal
- return result
-
-cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta, DTYPE_t lmbda,
- DTYPE_t w1, DTYPE_t w2, DTYPE_t w3):
- """weight for failed infection, exponential time model"""
- cdef DTYPE_t structural, temporal, result
- structural = delta ** dist
- # structural = delta/(1. + 1./(w1*lmbda) + 1./(w2*lmbda) + 1./(w3*lmbda))
- temporal = exp(-alpha * dt)
- # temporal = 1. - 1. / (1. + dt/alpha)**0.01
- result = log(1. - structural + structural * temporal)
- return result
-
-def ml2(dict root_victims, dict victims, dict non_victims,
- DTYPE_t alpha, DTYPE_t delta, DTYPE_t lmbda):
- cdef:
- int n_roots, n_victims, roots, i, dist, dt, t, l
- DTYPE_t ll
- list parents, failures, successes
- n_roots, n_victims = len(root_victims), len(victims)
- cdef:
- np.ndarray[DTYPE_t] probs = np.zeros(n_victims, dtype=DTYPE)
- np.ndarray[DTYPE_t] probs_fail = np.zeros(n_victims, dtype=DTYPE)
- np.ndarray[DTYPE_t] probs_nv = np.zeros(len(non_victims), dtype=DTYPE)
- np.ndarray[DTYPE_t] parent_dists = np.zeros(n_victims, dtype=DTYPE)
- np.ndarray[DTYPE_t] parent_dts = np.zeros(n_victims, dtype=DTYPE)
- np.ndarray[DTYPE_t] infectors = np.zeros(n_victims, dtype=DTYPE)
-
- # loop through victims
- for i, parents in enumerate(victims.itervalues()):
- # for each victim node i, compute the probability that all its parents
- # fail to infect it, also computes the probability that its most
- # likely parent infects it
- failures = [weight_failure(dist, dt, alpha, delta, lmbda, w1, w2, w3)
- for (prnt, dist, dt, w1, w2, w3) in parents]
- probs_fail[i] = sum(failures)
- successes = [weight_success(dist, dt, alpha, delta, lmbda, w1, w2, w3)
- for (prnt, dist, dt, w1, w2, w3) in parents]
- dists = [dist for (prnt, dist, dt, w1, w2, w3) in parents]
- dts = [dt for (prnt, dist, dt, w1, w2, w3) in parents]
- prnts = [prnt for (prnt, dist, dt, w1, w2, w3) in parents]
- # find parent that maximizes log(p) - log(\tilde{p})
- # probs[i] = max(s - failures[l] for l, s in enumerate(successes))
- probs[i] = float("-inf")
- for l, s in enumerate(successes):
- prob = s - failures[l]
- if prob > probs[i]:
- probs[i] = prob
- infectors[i] = prnts[l]
- parent_dists[i] = dists[l]
- parent_dts[i] = dts[l]
-
- # loop through non-victims
- for i, parents in enumerate(non_victims.itervalues()):
- # for each non victim node, compute the probability that all its
- # parents fail to infect it
- failures = [weight_failure(dist, dt, alpha, delta, lmbda, w1, w2, w3)
- for (prnt, dist, dt, w1, w2, w3) in parents]
- probs_nv[i] = sum(failures)
-
- # calculate log likelihood
- ll = probs_fail.sum() # add probability that all edges to victims fail
- ll += probs_nv.sum() # add probability that all edges to non_victims fail
- ll += probs.sum() # add probability for realized edges and subtract probability these edges fail
-
- roots = n_roots
- # print n_nodes, n_roots, n_victims, max_i, roots
- # print parent_dists[1:100]
- # print parent_dts[1:100]
- # print victims.keys()
- # print infectors
- # print np.mean(parent_dists)
- # print np.mean(parent_dts)
-
- with open('../../Results/infectors.csv', 'w') as infectors_file:
- for i, infector in enumerate(infectors):
- infectors_file.write("%s, %s\n" % ((victims.keys())[i], infector))
- return (lmbda, roots, ll)