summaryrefslogtreecommitdiffstats
path: root/experiments/ml3.pyx
diff options
context:
space:
mode:
Diffstat (limited to 'experiments/ml3.pyx')
-rw-r--r--experiments/ml3.pyx22
1 files changed, 8 insertions, 14 deletions
diff --git a/experiments/ml3.pyx b/experiments/ml3.pyx
index 1f46ef5..5cbe3ba 100644
--- a/experiments/ml3.pyx
+++ b/experiments/ml3.pyx
@@ -10,17 +10,16 @@ cdef DTYPE_t weight_success(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
DTYPE_t w1, DTYPE_t w2, DTYPE_t w3):
"""weight for successful infection, exponential time model"""
cdef DTYPE_t structural, temporal, result
- structural = dist * log(delta)
+ structural = delta ** dist
# structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta)
temporal = log(exp(alpha)-1.) - alpha*dt
# temporal = 1 - exp(-alpha*dt)
# if exp(-alpha*dt)==0.: print 'UNDERFLOW ERROR'
# temporal = 1. / (1. + (dt - 1.)/alpha)**0.01 - 1. / (1. + dt/alpha)**0.01
- result = structural + temporal
+ result = log(structural) + temporal
# print 'st', structural, temporal
return result
-
cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
DTYPE_t w1, DTYPE_t w2, DTYPE_t w3):
"""weight for failed infection, exponential time model"""
@@ -29,7 +28,7 @@ cdef DTYPE_t weight_failure(int dist, int dt, DTYPE_t alpha, DTYPE_t delta,
# structural = plogis(w1,delta) * plogis(w2,delta) * plogis(w3,delta)
temporal = exp(-alpha * dt)
# temporal = 1. - 1. / (1. + dt/alpha)**0.01
- result = log(1. - structural)
+ result = log(1. - structural + structural*temporal)
# print 'stnv', structural, temporal
return result
@@ -53,7 +52,7 @@ def ml3(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
# likely parent infects it
failures = [weight_failure(dist, dt, alpha, delta, w1, w2, w3)
for (dist, dt, w1, w2, w3) in parents]
- # probs_fail[i] = sum(failures)
+ probs_fail[i] = sum(failures)
successes = [weight_success(dist, dt, alpha, delta, w1, w2, w3)
for (dist, dt, w1, w2, w3) in parents]
dists = [dist for (dist, dt, w1, w2, w3) in parents]
@@ -67,20 +66,15 @@ def ml3(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
probs[i] = prob
parent_dists[i] = dists[l]
parent_dts[i] = dts[l]
- probs_fail[i] = failures[l]
-
- # print successes
- # print failures
- # print probs
+ # probs_fail[i] = failures[l]
# calculate log likelihood
- ll = probs_fail.sum() # add probability that all edges to victims fail
- # ll += probs_nv.sum() # add probability that all edges to non_victims fail
+ ll = probs_fail.sum() # add probability that all edges to all victims fail
# print 'probs', probs
max_beta_add = float('-inf')
# iterate over all victim nodes to find the optimal threshold
- for beta in np.arange(0.1, 1., .1):
+ for beta in np.arange(0.2, 1., 1.):
thresh = log(beta/(3012.*(1.-beta)))
# print 'beta:', beta, 'thresh:', thresh, 'infected:', len(probs[probs>=thresh])
roots = n_roots + len(probs[probs<thresh])
@@ -89,7 +83,7 @@ def ml3(dict root_victims, dict victims, dict non_victims, DTYPE_t age,
# add probability for realized edges and subtract probability these edges fail
beta_add += (probs[probs>=thresh]).sum()
# add probability for the seeds and non-seeds
- beta_add += roots * log(beta) + len(probs[probs>=thresh]) * log(1. - beta)
+ beta_add += roots * log(beta/3012.) + len(probs[probs>=thresh]) * log(1. - beta)
if beta_add > max_beta_add:
max_beta = beta